

Modulhandbuch

M.Sc.
BIOPHARMAZEUTISCHMEDIZINTECHNISCHE
WISSENSCHAFTEN

Stand: 13.11.2025

Modulübersicht:

Mikrobiologie und Biochemie des mikrobiellen Stoffwechsels	4
Pharmazeutische Grundlagen & Antikörper-Engineering	8
Medizinische Grundlagen	13
Methodenentwicklung, Basics of Good Manufacturing Practice (GMP)	18
Digitalisierung in der Produktion und Prozesstechnik	23
Advanced Good Manufacturing Practice (GMP) und Data Science	26
Grundlagen der Betriebswirtschaftslehre	33
Key Account und Pharma-Marketing	35
Projektmanagement und Professional Skills	38
Nachhaltigkeit & Umweltaspekte	42
Upstream Processing (USP), Downstream Processing (DSP) and Process Optimization	45
Methoden der Molekularbiologie	49
Cell Line Engineering	54
Arzneimittelzulassung und Recht	57
Therapeutische Proteine, Peptide & Small Drug Molecules	63
Stammzellen und Regenerative Medizin	66
Summer School	71
Medizinische Messtechnik	76
Labordiagnostik	79
Bioanalytical Methods	83
Biochemical Sensors / Biochemische Sensoren	87

Medizintechnik	90
Masterthesis	93

Modulnummer	1.1
Modultitel	Mikrobiologie und Biochemie des mikrobiellen Stoffwechsels
Modulkürzel	MBB
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M. Sc.)
Ort der Veranstaltung	Universität Ulm
Modulverantwortlichkeit	apl. Prof. Dr. Christian Riedel
Lehrende	apl. Prof. Dr. Christian Riedel
Voraussetzungen	
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang
	Biopharmazeutisch-Medizintechnische Wissenschaften
	verwendbar. Das Modul vermittelt Fachwissen im Bereich
Semester (empfohlen)	Mikrobiologie und Biochemie des mikrobiellen Stoffwechsels.
Max. Teilnehmerzahl	16
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung(en) im Labor mit E-Learning-Elementen
Duisanetaaa	□reine E-Learning-Veranstaltung(en) 2
Präsenztage Veranstaltungssprache	
ECTS-Credits	☑Deutsch, □Englisch, □Weitere, nämlich: 6 Credits
Prüfungsform und –umfang	
1 Turungsiorini unu —unmang	⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, ⊠Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, ⊠Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	11 C 1 D 11 C
	<u>Umfang der Prüfung:</u>
	60 Min Klausur
	Das Protokoll ist Voraussetzung für das Bestehen des Praktikums.
	Es wird nicht bewertet.
Lernziele	Fachkompetenz

	Studierende sind in der Lage, zentrale Inhalte der Mikrobiologie und der Biochemie des mikrobiellen Stoffwechsels zu erklären.
	Studierende kennen biotechnologisch relevante Mikroorganismen in der angewandten Mikrobiologie und können mikrobielle Verfahren zur Stoffproduktion und -umwandlung beschreiben.
	Studierende kennen die Mechanismen der mikrobiellen Regulation auf Transkriptions- und Translationsebene.
	Studierende können die Interaktionen zwischen Mikroorganismen untereinander und mit ihren Wirten erklären und analysieren.
	Methodenkompetenz Studierende können steril arbeiten, mikrobiologische Arbeitstechniken selbstständig anwenden und insbesondere im Hinblick auf die Masterarbeit eigenständig Wachstumsversuche mit Mikroorganismen durchführen und die Regulation von Schlüsselreaktionen analysieren.
	Selbst- und Sozialkompetenz Studierende kennen die üblichen Verfahren und Grundsätze wissenschaftlichen Arbeitens in der Mikrobiologie.
	Studierende können selbstständig durchgeführte wissenschaftliche Arbeiten auf dem Gebiet der Mikrobiologie schriftlich zusammenfassen und präsentieren.
Lehrinhalte	 Grundlagen der Mikrobiologie und der Biochemie des mikrobiellen Stoffwechsels Vielfalt der Mikroorganismen & Rolle der Mikroorganismen in der Natur und in der Biotechnologie Viren Grundlagen der Biochemie und Biochemie mikrobieller Strukturen Zellbiologie der Mikroorganismen Wachstum und Ernährung von Mikroorganismen Grundlagen des mikrobiellen Energiestoffwechsels: Energiekonservierung, aerobe und anaerobe Atmung, Gärung, Chemoorganotrophie, Chemolithotrophie, Phototrophie

	 Grundlagen des mikrobiellen Baustoffwechsels: Heterotrophie, Autotrophie, Anaplerotik Transportmechanismen für Nährstoffe und Produkte Angewandte Mikrobiologie Biotechnologisch relevante Mikroorganismen Fermentations- und aufarbeitungstechnische Grundlagen Stoffproduktion und -umwandlung mit ganzen Zellen, u.a. mikrobielle Herstellung von Bio-Ethanol, organischen Säuren, Aminosäuren, höherwertigen und verzweigten Alkoholen und Antibiotika
	 Mikrobielle Regulation Mechanismen der bakteriellen Transkription und Translation Proteinbasierte Regulation an DANN RNA-basierte Regulation an DANN Enzym-basierte Regulation
	 Interaktionen von Mikroorganismen untereinander und mit ihren Wirten Grundlegende Arten der Interaktion: Probiose, Mutualismus, Parasitismus Interaktion mit Wirtszellen: Adhäsion und Invasion Verlauf von Infektionen Wirtsabwehr/Immunität
	 Mikrobiologische Übungen im Labor Erlernen mikrobiologischer Arbeitstechniken, die es ermöglichen, Mikroorganismen in Reinkulturen zu züchten Quantitative Erfassung des Bakterienwachstums und Untersuchung von Stoffwechsel- und Regulationsprozessen
Literatur	 Madigan MT., Martinko JM.: Biology of Microorganisms, 14. Auflage, Pearson Education; Inc., Upper Saddle River, USA, 2015 (oder 13. Aufl. 2012) Fuchs, Eitinger, Heider, Kemper, Kothe: Allgemeine Mikrobiologie, 9. Aufl., Thieme Verlag, 2014 Steinbüchel A, Oppermann-Sanio FB.: Mikrobiologisches Praktikum, 1.Aufl., Springer-Verlag, Berlin, 2003

- Alberts, Johnson, Lewis, Morgan, Raff, Roberts, Walter: *Molekularbiologie der Zelle*, 6. Aufl., Garland Publishing, 2017 (entspricht der englischen Version von 2014, Wiley-Verlag)
 - Voet, Voet, Pratt: *Lehrbuch der Biochemie*. 2. Aufl. Wiley-VCH Verlag, 2010
- Nordheim Knippers u.a.: *Molekulare Genetik*, 10. Auflage. Georg Thieme Verlag KG, 2015
- Watson, Baker, Bell, Gann, Levine, Losick: *Molekularbiologie*, 6. Auflage. Pearson Studium, 2011
- Cossart P., Boquet P., Normark S., Rappuoli R.: *Cellular Microbiology*, 2. Auflage, ASM Press, USA, 2005
- Ofek I., Hasty D.l, Doyle RJ.: *Bacterial Adhesion to Animal Cells and Tissues*, ASM Press, USA, 2003
- Sahm H., Antranikian G., Stahmann K.-P., Takors R.: *Industrielle Mikrobiologie*, Springer-Verlag, Berlin, 2013
- Bisswanger, H.: *Enzyme*, 1. Auflage, Wiley-VCH, 2015

Modulnummer	1.2
Modultitel	Pharmazeutische Grundlagen & Antikörper-Engineering
Modulkürzel	PGAE
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Hochschule Biberach
Modulverantwortlichkeit	Prof. Dr. Katharina Zimmermann
Lehrende	Prof. Dr. Katharina Zimmermann: Antikörper-Engineering
	Rebecca Rittersberger: Pharmazeutische Grundlagen
Voraussetzungen	Grundlagen der Proteinbiochemie und Zellbiologie
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang
	Biopharmazeutisch-Medizintechnische Wissenschaften
	verwendbar. Das Modul vermittelt Fachwissen bzgl. der Grundsätze der Pharmakologie, Toxikologie, Pharmazeutischen
	Technologie, Immunologie und des Antikörper Engineerings.
Semester (empfohlen)	2
Max. Teilnehmerzahl	10
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung(en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	2
Veranstaltungssprache	⊠Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, ⊠Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, ⊠Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	60 Min Klausur (jeder Teil 30 Min)
	Wertung: 50% Pharmazeutische Grundlagen Klausur
	25% Antikörper-Engineering Klausur
	25% Antikörper-Engineering Praktikumsprotokoll
	2570 Amukorper-Engineering Fraktikumsprotokon

Lernziele

Fachkompetenz

Studierende erwerben Kompetenzen in der Pharmakologie und Toxikologie, pharmazeutischen Biologie, pharmazeutischen Chemie und pharmazeutischen Technologie.

Studierende kennen wichtige Arzneimittelstoffe und können Inhalte der Wirkstofflehre erläutern.

Studierende kennen die modernen Prozesse und Qualitätsanforderungen bei der Arzneimittelentwicklung und – herstellung, z.B. von Biopharmazeutika.

Studierende kennen verschiedene pharmazeutische Darreichungsformen und die Verwendung von Hilfsstoffen.

Studierende kennen verschiedene physiologische Abläufe und können deren Verwendung als Arzneimitteltarget bewerten.

Studierende können die Wirkung, Anwendung und Risiken von Arzneimitteln (im Speziellen Biopharmazeutika), von Medizinprodukten, sowie von Arzneimittel- und Medizinproduktkombinationen wiedergeben und analysieren.

Studierende können anhand vorgegebener Fragestellungen die Grundprinzipien der Funktion des Immunsystems erläutern.

Studierende sind in der Lage, eigenständig Biopharmazeutika zu konzipieren und ihre erwünschten sowie unerwünschten Wirkungen abzuschätzen.

Methodenkompetenz

Studierende erlernen Grundlagen pharmazeutischer Kompetenzen und verstehen deren Zusammenhänge in Bezug auf die Entwicklung und Herstellung von Arzneimitteln.

Studierende erlernen im Laborpraktikum spezielle Techniken des Antikörper Engineerings und können diese anwenden. In der Vorlesung lernen sie außerdem weitere Methoden zur Konzeption und Herstellung von Antikörperfragmenten, bispezifischen

	Antikörpern, Fc-Fusionsproteinen sowie zur Affinäts-Maturierung kennen. Selbst- und Sozialkompetenz Die Studierenden sind in der Lage durch ihre Kommunikations- und Schnittstellenkompetenz die Inhalte aus Pharmazie und Immunologie zu verbinden und mit Lerninhalten anderer Module zu verknüpfen. Durch Lernbereitschaft, Kreativität und Belastbarkeit können die Studierenden sowohl selbstständig als auch im Team komplexe
	Aufgaben lösen. Sie lernen ihr analytisches Denken anzuwenden und auf verschiedene Probleme zu übertragen.
Lehrinhalte	Grundlagen der Pharmakologie und Toxikologie - Pharmakokinetik: Grundlagen, Resorption, Verteilung, Biotransformation & Ausscheidung, pharmakokinetische Parameter - Pharmakodynamik: Nebenwirkungen und Interaktionen - Pharmakogenetik - Toxikologie
	Pharmazeutische Chemie - Molekulare Grundlagen der Arzneistoffwirkung - Molekülstruktur und Arzneistoffwirkung - Wirkstofflehre (ausgewählte Beispiele)
	 Pharmazeutische Biologie Primär- und Sekundärstoffwechsel Pharmaka aus Pflanzen Qualität, Wirksamkeit und Unbedenklichkeit von Phytopharmaka Pharmaka aus Mikroorganismen

	Pharmazeutische Technologie - Verwendung von Hilfsstoffen - Zubereitungen: flüssig (Lösungen, Emulsionen, Suspensionen), fest (Pulver, Granulate, Tabletten, Kapseln, Überzüge), halbfest (Salben, Cremes) - Qualitätsanforderungen: Stabilität und Inkompatibilitäten
	PackmittelGrundlagen der Biopharmazie
	Bestandteile und Wirkungsweise des Immunsystems - angeborene und erworbene Immunität - Antigenpräsentation auf MHC-I und MHC-II - Variabilität von T- und B-Zellrezeptoren und Antikörpern - Reifung und Aktivierung von T- und B-Zellen - Effektorfunktionen: Fc-Domäne und Wechselwirkungen mit FcRs, FcRn - Onkologie & Tumorimmunologie - Toleranz, Unverträglichkeitsreaktionen Typ I – IV
	Entwicklung & Anwendung von Biopharmazeutika - aktive und passive Immuntherapie - Effektorfunktionen von Antikörpern - Fc-Fusionsproteine, Antikörperfragmente und Scaffolds - Halbwertszeitverlängerung - Bispezifische Antikörper - Klinische Beispiele
Literatur	Pharmazeutische Grundlagen - Taschenatlas der Pharmakologie: Heinz Lüllmann, Klaus Mohr, Lutz Hein, ISBN-10: 3-13-707706-0 - Mutschler Arzneimittelwirkungen: Lehrbuch der Pharmakologie und Toxikologie

- *Lehrbuch der Pharmazeutischen Technologie*; Kurt H. Bauer, Karl-Heinz Frömming, Claus Führer, ISBN: 978-3804722224, Wissenschaftliche Verlagsgesellschaft; Auflage 8

Antikörper-Engineering

- *Grundwissen Immunologie*; Christine Schütt, Barbara Bröker, 2. Auflage (2009) bzw. 3. Auflage (2011); ISBN: 978-3-8274-2647-5
- Basic Immunology: Functions and Disorders of the Immune System; Abul K. Abbas, Andrew H. H. Lichtman, Shiv Pillai, 4th Edition

Modulnummer	1.3
Modultitel	Medizinische Grundlagen
Modulkürzel	MG
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Duale Hochschule BW
Modulverantwortlichkeit	Prof. Dr. Wolfgang Weidemann
Lehrende	Prof. Dr. Wolfgang Weidemann
Voraussetzungen	D' Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang
	Biopharmazeutisch-Medizintechnische Wissenschaften
	verwendbar. Das Modul vermittelt Basiswissen zur Anatomie und
	Physiologie, zur Pathologie und spezialisiertes Wissen zu ausgewählten pathologischen Beispielen.
Semester (empfohlen)	Jederzeit, vorzugsweise zu Studienbeginn
Max. Teilnehmerzahl	10
Art der Veranstaltung	□Präsenzveranstaltung(en)
	⊠Präsenzveranstaltung(en) mit E-Learning-Elementen
	□Präsenzveranstaltung(en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	3
Veranstaltungssprache	⊠Deutsch, □Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	⊠Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	60 Min Klausur (50%)
	` '
Y . 1	45 Min Vortrag inkl. Diskussion (50%)
Lernziele	Fachkompetenz
	Das Modul "Medizinische Grundlagen" vermittelt medizinische
	Grundkenntnisse bzw. frischt diese auf.

Nach Abschluss des Moduls können die Studierenden die Grundlagen der Anatomie und der Physiologie des Menschen wiedergeben und diese Kenntnisse bei Fragestellungen sicher anwenden. Sie können einen Überblick über die wichtigsten Krankheitsbilder geben und sind mit Grundkenntnissen ihrer Ätiologie und Pathogenese vertraut.

Aufbauend auf den entsprechenden zellulären Grundlagen, verfügen die Studierenden in ausgewählten Bereichen auch über hochspezialisiertes Wissen in den Fachgebieten der zellulären Kommunikation, der Molekulargenetik sowie der klinischen Pharmakologie und sind mit aktuellen Fragestellungen dieser Fachgebiete vertraut.

Sie können nach Abschluss des Moduls in diesem spezialisierten Bereich die medizinischen Fachbegriffe nicht nur wiedergeben, sondern auch sicher anwenden und können Verbindungen zwischen den verschiedenen Gebieten benennen und mit wissenschaftlichen Fragestellungen in Verbindung setzen.

Methodenkompetenz

Die Studierenden haben die Kompetenz erworben, medizinische Fachtexte zu analysieren und mit Angehörigen anderer Berufsgruppen aus dem medizinischen und nichtmedizinischen Bereich (unter anderem aus Klinik, Labor und Industrie) zu diskutieren.

Sie sind in der Lage, sich eigenständig und in der Gruppe weitere anatomische, physiologische und pathophysiologische Aspekte des menschlichen Organismus zu erarbeiten und diese adäquat zu präsentieren.

Selbst- und Sozialkompetenz

Die Studierenden haben durch das erlangte Wissen über Aufbau, Funktionsweise und Zusammenspiel von Zellen, Geweben und

	Organen des menschlichen Körpers ein besseres Verständnis für die Komplexität integrierter Leistungen des Gesamtorganismus und die Vielfalt möglicher Störungen erworben und können diese benennen und in einen Zusammenhang setzen. Hierdurch werden sie befähigt, Aufgaben und Problemstellungen im medizinischen Kontext besser zu verstehen, selbständig praxisgerechte Lösungen zu entwickeln und diese im Alltag umzusetzen.
	Die Studierenden können im medizinischen Grundlagenbereich als kompetente Ansprechpartner mit Angehörigen anderer Berufsgruppen aus dem medizinischen und nichtmedizinischen Bereich und mit Kundinnen und Kunden adäquat kommunizieren. Insbesondere sind sie in der Lage, auch gegenüber Fachfremden die grundlegenden anatomischen, physiologischen und pathophysiologischen Zusammenhänge plausibel darzustellen und nachvollziehbar zu begründen.
Lehrinhalte	 Anatomie, Physiologie und Pathophysiologie des Menschen Medizinische Terminologie Mechanismen der zellulären Kommunikation Molekulargenetik Klinische Pharmakologie
Literatur	 Anderhuber, F. et al.: Waldeyer Anatomie des Menschen. De Gruyter, Berlin Aumüller, G. et al.: Duale Reihe: Anatomie. Thieme, Stuttgart Becker, P.: Checklisten Krankheitslehre. Urban & Fischer, München Behrends, J. et al.: Duale Reihe Physiologie. Thieme, Stuttgart Beise, U. et al.: Gesundheits- und Krankheitslehre. Lehrbuch für die Gesundheits-, Kranken- und Altenpflege. Springer, Berlin Heidelberg Böcker, W. et al.: Pathologie. Urban & Fischer, München Caspar, W.: Medizinische Terminologie. Lehr- und Arbeitsbuch. Thieme, Stuttgart

- Deschka, M.: Lernkarten Grundwortschatz Medizin. Bibliomed-Medizinische Verlagsgesellschaft mbH, Melsungen
- Drake, R.L. et al.: *Gray's Atlas der Anatomie*. Urban & Fischer, München Drenckhahn, D., Waschke, J.: *Benninghoff Taschenbuch Anatomie*. Urban & Fischer, München
- Faller, A.: Der Körper des Menschen: Einführung in Bau und Funktion. Thieme, Stuttgart
- Fangerau, H. et al.: *Medizinische Terminologie*. Lehmanns, Köln
- Fölsch, U.R. et al.: *Pathophysiologie*. Springer, Berlin Heidelberg
- Gekle, M. et al.: *Taschenlehrbuch Physiologie*. Thieme, Stuttgart
- Hafner, M., Meier, A.: Geriatrische Krankheitslehre. Teil II: Allgemeine Krankheitslehre und somatogene Syndrome. Hans Huber, Bern
- Huch, R., Jürgens, K.D.: Mensch, Körper, Krankheit. Anatomie, Physiologie, Krankheitsbilder. Lehrbuch und Atlas für die Berufe im Gesundheitswesen. Urban & Fischer, München
- Huppelsberg, J., Walter K.: *Kurzlehrbuch Physiologie*. Thieme, Stuttgart
- Kirchner, T. et al.: *Kurzlehrbuch Pathologie*, Urban & Fischer, München
- Kurtz, A. et al.: *Physiologie*. Thieme, Stuttgart
- Lippert, H.: Lehrbuch Anatomie. Urban & Fischer, München
- Lüllmann, H., Mohr, K., Hein, L.: Taschenatlas der Pharmakologie. Thieme, Stuttgart
- Meyer, R.: *Allgemeine Krankheitslehre kompakt*. Hans Huber, Bern
- Müller, I.: Medizinische Terminologie. Klartext-Verlag, Essen
- Paulsen, F., Waschke, J.: Sobotta: Atlas der Anatomie des Menschen, 3 Bände und Tabellenheft. Urban & Fischer, München
- Psychrembel Klinisches Wörterbuch. De Gruyter
- Reece, J.B. et al.: Campbell Biologie. Pearson, Hallbergmoos

- Riede, U.-N. et al.: *Basiswissen Allgemeine und Spezielle Pathologie*. Springer, Berlin Heidelberg
- Roessner, A. et al.: *Kurzlehrbuch Pathologie*. Urban & Fischer, München
- Schmidt, R.F. et al.: *Physiologie des Menschen mit Pathophysiologie*. Springer, Berlin Heidelberg
- Schulte, E. et al.: *Prometheus LernAtlas der Anatomie. Allgemeine Anatomie und Bewegungssystem.* Thieme, Stuttgart
- Silbernagl, S., Lang, F.: *Taschenatlas der Pathophysiologie*. Thieme, Stuttgart
- Speckmann, E.-J. et al.: *Physiologie*. Urban & Fischer, München
- Steger, F., Bendel, S.: *Medizinische Terminologie*. Vandenhoeck & Ruprecht, Göttingen
- Vaupel, P. et al.: *Anatomie, Physiologie, Pathophysiologie des Menschen.* Wissenschaftliche Verlagsgesellschaft, Stuttgart

Modulnummer	2.1
Modultitel	Methodenentwicklung, Basics of Good Manufacturing Practice (GMP)
Modulkürzel	GMP
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Hochschule Biberach
Modulverantwortlichkeit	Prof. Dr. Chrystelle Mavoungou-Pfäffle
Lehrende	Julia Vincenz: Basics of Good Manufacturing Practice (GMP I) Dr. Eva Meister: Methodenentwicklung
Voraussetzungen	
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang Biopharmazeutisch-Medizintechnische Wissenschaften verwendbar. Das Modul vermittelt Fachwissen bzgl. der Grundsätze- und Prinzipien der pharmazeutischen Herstellung, angefangen von der Planung und Aufbau eines Technikums bis zur Produktentstehung hin zur Qualitätssicherung und nachhaltige Methoden der Qualitätskontrolle und Validierung in der Routineanalytik.
Semester (empfohlen)	2
Max. Teilnehmerzahl	15
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen □reine E-Learning-Veranstaltung(en)
Präsenztage	2
Veranstaltungssprache	⊠Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	3 Credits
Prüfungsform und –umfang	⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, ⊠Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale

	<u>Umfang der Prüfung:</u>
	Klausur: 45 Minuten
	Praktikumsprotokoll (unbenotet, muss aber bestanden werden)
Lernziele	Fachkompetenz
	GMP I
	Die Studierenden können Schlüsselbegriffe der Qualitätssicherung,
	der "Guten Laborpraxis (GLP)" und der "Guten Herstellungspraxis
	(GMP)" erklären und sicher anwenden.
	Die Studierenden können die Erstellung von pharmazeutischen
	Arbeitsanweisungen umsetzen.
	Ferner können die Studierenden die grundlegenden Begriffe wie
	Qualifizierung, Validierung, Risikobewertung etc. aus der
	Qualitätssicherung unterscheiden und benutzen.
	Methodenentwicklung
	Die Studierenden können ein Trennproblem anhand eines
	praktischen Trennbeispiels (z.B. Trennung und quantitative
	Bestimmung von Koffein in unterschiedlichen Getränken und
	Medikamenten oder quantitative Bestimmung von Insulin) bei
	Veränderung von chromatographischen Parametern optimieren.
	Methodenkompetenz
	Methodenentwicklung (HPLC)
	Die Studierenden lernen die Bauteile einer HPLC-Anlage kennen
	und lernen diese anzuwenden.
	Die Studierenden können ein Trennproblem quantitativ und
	qualitativ bearbeiten.
	Im Laborpraktikum werden unterschiedliche Optionen zur
	Optimierung eines HPLC-Laufes erarbeitet.
	Die Studierenden erlernen chromatographische Kenngrößen (z.B.
	Kapazitätsfaktor, Selektivität, Auflösung, Bodenzahl etc.).
	Selbst- und Sozialkompetenz
	Durch Lernbereitschaft, Kreativität und Belastbarkeit können die
	Studierenden sowohl selbstständig als auch im Team komplexe
	Aufgaben lösen.
	0

	Sie lernen ihr analytisches Denken anzuwenden und auf verschiedene Probleme flexibel zu übertragen.
Lehrinhalte	GMP I - Was bedeutet Qualität? - Folgen schwerer Qualitätsmängel in der pharmazeutischen Herstellung - Phasen der Arzneimittelentwicklung - Qualitätsmanagement und Qualitätssicherung - Stufen der Qualifizierung mit Beispielen - Ablauf einer Validierung am Beispiel von Analysenmethoden im Pharmabereich - Arzneibücher (AMG; Pharm. Eur.), Arbeitsanweisungen und Herstellungsanweisungen - GxP, Abgrenzung GMP/GLP - Überwachungsbehörden - EG-Leitfaden einer Guten Herstellungspraxis - Reinraumzonen - pharmazeutischer Herstellungsprozess: Produktion, Qualitätskontrolle und Freigabe Methodenentwicklung - Bauteile einer HPLC Anlage - Qualitativer und quantitativer Aspekt eines Chromatogramms - Chromatographische Kenngrößen (z.B. Kapazitätsfaktor, Selektivität, Auflösung, Bodenzahl etc.) - Auswirkung von chromatographischen Parametern (Temperatur, Fluss/Druck, Eluentenzusammensetzung etc.)
Literatur	GMP I - Fachzeitschrift: pharmind; Editio Cantor Verlag ISSN 0031-711X - Gad, S. C. (Ed.). (2008). Pharmaceutical manufacturing handbook: production and processes (Vol. 5). John Wiley & Sons

- Ermer, J., & Miller, J. H. M. (Eds.). (2014). *Method validation* in pharmaceutical analysis: A guide to best practice (2nd Edition). John Wiley & Sons
- Europäisches Arzneibuch 11. Ausgabe, Amtliche deutsche Ausgabe (2023), ISBN 978-3-7692-8330-3
- Kromidas, S. (2011). *Validierung in der Analytik*. 2. Auflage, John Wiley & Sons
- Box, G. E., Hunter, J. S., & Hunter, W. G. (2005). *Statistics for experimenters: design, innovation, and discovery* (Vol. 2). New York: Wiley-Interscience
- Viswanathan, C. T., Bansal, S., Booth, B., DeStefano, A. J., Rose, M. J., Sailstad, J., ... & Weiner, R. (2007). *Quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays*. Pharmaceutical research, 24 (10), 1962-1973
- Schweitzer, M., Pohl, M., Hanna-Brown, M., Nethercote, P., Borman, P., Hansen, G., ... & Larew, J. (2010). *Implications and opportunities of applying QbD principles to analytical measurements*. Pharmaceutical Technology, 34 (2), 52-59
- ICH-Q-Richtlinien (Q2, Q6, Q7, Q8, Q9, Q10, Q12)
- U.S. FDA Guidance for Industry: *Bioanalytical Method Validation* (2018)
- Ledolter, J., & Burrill, C. W. (2005). Statistical quality control: Strategies and tools for continual improvement. 2. Auflage, Wiley
- Christ, G. A., Harston, S. J., & Hembeck, H. W. (1998). *GLP-Handbuch für Praktiker*. 2. überarbeitete Auflage, GIT Verlag.
- EG-Leitfaden der Guten Herstellungs-Praxis für Arzneimittel und Wirkstoffe, 10. Auflage, ISBN 3-87193-417-9
- GMP-Berater, Nachschlagewerk für Pharmaindustrie und Lieferanten, Maas & Peither, GMP Verlag
- Bhatt, V. (1998). *GMP Compliance, Productivity & Quality*. CRC Press
- Behr, A., Agar, D.W., Jörissen, J. & Vorholt, A.J. (2016). *Technische Chemie*. Springer-Verlag

- Schwister, K., & Leven, V. (2020). Verfahrenstechnik für Ingenieure: Ein Lehr-und Übungsbuch. 4. Auflage, Carl Hanser Verlag GmbH Co KG

HPLC Methodenentwicklung

- Meyer, Veronika R., (2009). *Praxis der Hochleistungs-Flüssigchromatographie* 10. Auflage, Wiley-VCH, Weinheim
- Schwedt, G.: (1986). Chromatographische Trennmethoden. Theoretische Grundlagen, Techniken und analytische Anwendungen. Georg Thieme Verlag, Stuttgart
- Otto, Matthias, (2019). *Analytische Chemie* Wiley-VCH, Weinheim

Modulnummer	2.1a
Modultitel	Digitalisierung in der Produktion und Prozesstechnik
Modulkürzel	DPP
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften
	(M.Sc.)
Ort der Veranstaltung	Hochschule Biberach
Modulverantwortlichkeit	Prof. Dr. Heike Frühwirth
Lehrende	Prof. Dr. Heike Frühwirth: Verfahrens- und Anlagentechnik
	Dr. Britta Schwartze: Verfahrens- und Anlagentechnik und Virtual
	Reality Versuch
Voraussetzungen	Keine Voraussetzungen, GMP Basic wäre wünschenswert
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang
	Biopharmazeutisch-Medizintechnische Wissenschaften
	verwendbar. Das Modul vermittelt Fachwissen bzgl.
	technologische Grundlagen für die Herstellung von pharmazeutischen Produkten.
Semester (empfohlen)	3
Max. Teilnehmerzahl	15
Art der Veranstaltung	□Präsenzveranstaltung(en)
	⊠Präsenzveranstaltung(en) mit E-Learning-Elementen
	□Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	1
Veranstaltungssprache	⊠Deutsch, □Englisch, □Weitere, nämlich:
ECTS-Credits	3 Credits
Prüfungsform und –umfang	□Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, ⊠Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, ⊠Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	Schriftliche Prüfung: Protokoll Übungsaufgabe (nicht benotet,
	muss aber bestanden werden)
	illuss user sesunden werden)

Lernziele	Fachkompetenz
	Nach Besuch dieser Vorlesung kennen die Studierenden die
	Grundlagen der Verfahrenstechnik und die prinzipielle
	Funktionsweise von Produktionsanlagen.
	Studierende können Verfahrensfließbilder interpretieren und
	Massenbilanzen erstellen. Zudem werden ausgewählte Kapitel aus
	der Verfahrenstechnik vorgestellt, die innerhalb des Moduls
	praktisch in einem Virtual Reality (VR) Versuch im Rahmen des
	Praktikums angewandt werden. Beispiele für die Kapitel aus der
	Verfahrenstechnik sind die Berechnung der Rührleistung in einem
	Reaktor oder die Betrachtung der Destillation zur Aufreinigung
	eines Produktes. Weiterhin wird das Konzept der Anwendung von
	(dimensionslosen) Kennzahlen bei der empirischen Auslegung von
	verfahrenstechnischen und biotechnologischen Prozessen
	vorgestellt.
	Methodenkompetenz
	Die Studierenden lernen Berechnungsmethoden für einfache
	verfahrenstechnische Grundoperationen kennen und können diese
	nach erfolgreicher Absolvierung des Moduls für die Auslegung der
	entsprechenden Apparate im Basic Engineering anwenden. Die
	Studierenden lernen des Weiteren Methoden zur Darstellung von
	Prozessen (Verfahrensfließbilder umzugehen und Blockfließbilder
	zu erstellen. Dazu werden Methoden zur Stoff- und
	Energiebilanzierung behandelt.
	Selbst- und Sozialkompetenz
	Durch Lernbereitschaft, Kreativität und Belastbarkeit können die
	Studierenden sowohl selbstständig als auch im Team komplexe
	Aufgaben lösen.
	Sie lernen ihr analytisches Denken anzuwenden und auf
	verschiedene Probleme flexibel zu übertragen.
Lehrinhalte	- Einführung in Block-, Verfahrens- und R&I-Fließbilder
	- Grundlagen der Massen- und Energiebilanzierung

	 Anwendung von dimensionslosen Kennzahlen Ausgewählte Kapitel der VT: Reaktionstechnik: Mischen und Rühren Verteilungsgleichgewicht (Gas/ Flüssig) Destillation Druckverlust in Leitungen Einsatz von Prozess-Leitsystemen (PLS) Grundsätzlicher Aufbau und Bedienung von Batch-Produktionsanlagen (Praktikum)
Literatur	 Behr, A., Agar, D.W., Jörissen, J. & Vorholt, A.J. (2016). <i>Technische Chemie</i>. Springer-Verlag Schwister, K., & Leven, V. (2014). <i>Verfahrenstechnik für Ingenieure: Ein Lehr-und Übungsbuch</i>. Carl Hanser Verlag GmbH Co KG

Modulnummer	2.1b
Modultitel	Advanced Good Manufacturing Practice (GMP) und Data Science
Modulkürzel	AGD
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Hochschule Biberach
Modulverantwortlichkeit	Prof. Dr. Chrystelle Mavoungou-Pfäffle
Lehrende	Prof. Dr. Chrystelle Mavoungou-Pfäffle: GMP II und Data Sciences
Voraussetzungen	Modul "GMP Basic" oder berufliche Erfahrungen im Bereich GMP
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang Biopharmazeutisch-Medizintechnische Wissenschaften verwendbar. Im Fach GMP II, vermittelt das Modul vertieftes Fachwissen bzgl. der Grundsätze- und Prinzipien der pharmazeutischen Herstellung. Darüber hinaus wird im Rahmen des Fachs "Data Sciences" Regulierungsprozesse, die sich auf die Bewertung von Daten anstelle von Dokumenten bewerten, berücksichtigt. Die potenzielle Sekundärnutzung der gesammelten Daten (mit ihren relevanten Attributen) werden exemplarisch im Rahmen eines Kurzpraktikums geprüft. Hierbei lernen die Teilnehmer*innen wie Entscheidungen im Zuge einer Methodenentwicklung datenbasiert erleichtert oder verbessert werden können.
Semester (empfohlen)	3
Max. Teilnehmerzahl	15
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	2
Veranstaltungssprache	⊠Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	3 Credits
Prüfungsform und –umfang	□Klausur, □Referat, □Kolloquium, ⊠Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,

	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, ⊠Protokoll,
	⊠Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	Mündliche Prüfung im Zusammenhang mit einer Posterpräsentation
	(benotet)
Lernziele	Fachkompetenz
	Advanced GMP (GMP II)
	Die Studierenden können die erworbenen wissenschaftlichen
	Grundlagen der pharmazeutischen und biotechnologischen
	Herstellung von Biopharmazeutika, sowie Arzneimittel- und
	Medizinproduktkombinationen unter Berücksichtigung der
	Grundsätze und Prinzipien des "Quality by Design (QbD)"
	vertiefen und komplexe Fragenstellungen bearbeiten.
	Die Studierenden können die Prinzipien der "Process Analytical
	Technologie (PAT)" erläutern und verstehen die spektroskopischen
	Tools oder auch Sensoren aller Art für die routinemäßige Analytik
	auf allen Ebenen der Produktion.
	Die Studierenden verstehen die Bedeutung von PAT als Mittel für
	die zweckmäßige Behandlung von Rohmaterialien, Intermediaten
	und Fertigarzneimitteln und können dieses Wissen implementieren,
	um die Leitlinien und Gesetze für die Abgabe, den Vertrieb, die
	Dokumentation und die Entsorgung von Arzneimitteln, von
	pharmazeutischen und biotechnologischen Hilfsstoffen sowie die
	entsprechenden Vorschriften zu verstehen.
	Qualitätssicherung / Dekumentation
	Qualitätssicherung / Dokumentation Die Studierenden sind in der Lage die Leitlinien der
	Qualitätssicherung (QS) im regulatorischen Umfeld im Rahmen an,
	in dem Sie sich die Grundprinzipien der QS in pharmazeutischen
	Betrieben im Unterricht aneignen.
	Denies di directioni anoignem.

Sie sind mit biophysikalischen, biochemischen, biotechnologischen und bioanalytischen Methoden vertraut und können darauf aufbauend QS-Strategien beurteilen und entwickeln.

Sie lernen die Tools der modernen Qualitätssicherung kennen und bewerten diese unter Berücksichtigung der ICH-Leitlinien und GMP-Leitfäden der Methoden- und Prozessvalidierung im Rahmen des "Quality by Design (QbD)".

Sie entwickeln und nutzen PAT-Werkzeuge für das Design, zur Analyse und zur Kontrolle pharmazeutischer Herstellungsprozesse durch das Evaluieren und Messen "kritischer Materialattribute (CMA)" und kritischer Prozessparameter (CPP).

Die Studierenden können die Prozess- und Produktvariabilität analysieren und bewerten.

Anhand von Six-Sigma, Lean- und PAT-Strategien können die Studierenden ein Konzept zur Qualitätssicherung entwerfen.

Im Laborpraktikum können die Studierenden QbD-Konzepte implementieren. Sie sind in der Lage selbständig Validierungs- und Qualifizierungspläne zu erstellen und weiterzuentwickeln. Zusätzlich erlernen die Studierenden die Vorgehensweise bei der Verifizierung und Freigabeanalytik. Darüber hinaus erstellen Sie In-Prozess-Kontrollen.

Data Sciences, Good Machine Learning Practice (GMLP) und Methodenkompetenz

Die Studierende können Schlüsselbegriffe der EU Data Quality Framework (DQF) erklären und können diese im Rahmen des Datenlebenszyklus unter Berücksichtigung der "Guten Laborpraxis (GLP)" und der "Guten Herstellungspraxis (GMP)" sicher anwenden.

Ferner können die Studierenden die Grundsätze der "Good Machine Learning Practice (GMLP)", die bei der Unterstützung von Methoden (mit und ohne Sensorik) Anwendung finden verstehen und benutzen. Sie können komplexe Zusammenhänge unter Verwendung von Test-, und Trainings- sowie validierten Daten verstehen.

Die Studierenden können verschiedene analytische Methoden für die Qualitätssicherung, die im Labor und in der Routineanalytik angewendet werden, implementieren und falls erforderlich optimieren. Die Studierenden führen statistische Berechnungen für die Methodenvalidierung und die Qualitätskontrolle anhand der biund multivariaten Datenanalyse aus. Sie nutzen primäre und sekundäre Daten für Methodenoptimierungen.
Selbst- und Sozialkompetenz Durch Lernbereitschaft, Kreativität und Belastbarkeit können die Studierenden sowohl selbstständig als auch im Team komplexe Aufgaben lösen. Sie lernen ihr analytisches Denken anzuwenden und auf verschiedene Probleme flexibel zu übertragen.
 GMP II Trends in der pharmazeutischen Entwicklung: Industrie 4.0, Automation, Digitalisierung / Data Integrity Regeln und Konformitätskriterien für Daten; EU Data Quality Framework (DQF). Good Machine Learning Practice (GMLP) Wissensmanagement und effiziente Entwicklung, von der Planung zur Marktproduktion, GMP-Geltungsbereich, Wechselwirkungen zwischen pharmazeutischen Entwicklungen und GMP-Anforderungen, neue Werkzeuge der GMP-Prozessentwicklung Qualitätsrisikomanagement: Checklisten, FMEA, RPZ & Pareto-Diagramme, FMECA, C&E Matrix Was ist QbD? Was ist PAT? Produktdefinition und design Prozessdesign und analytisches
- Produktdefinition und -design, Prozessdesign und analytisches

Design: "ATP, TPP & QTPP, "Design Space", PAT-Strategien,

Qualitätsorientiertes Management der Variabilität

Hochschule Biberach. University of Applied Sciences

Lehrinhalte

- Bedeutung und Rolle eines PAT-basierten Systems in der Pharma
- PAT als technisches und regulatorisches Werkzeug

Angewandte Qualitätssicherung

- Qualitätssicherung in Produktentwicklung und Risikomanagement
- Qualitätssicherungssysteme
- Statistische Prozesskontrolle im CMC-Bereich
- Multivariate Datenanalyse und Prozessmonitoring
- Entwicklung und Validierung analytischer Methoden für
- die Qualitätskontrolle
- Umfang der Validierung in der Entwicklung, Spurenanalytik und Re-Validierung
- Umfang der Validierung in der Analytischen Kontrolle; Validierungsansätze
- Umfang der Validierung in der klinischen Entwicklung; Ablauf einer Vollvalidierung
- Validierbarkeit/ Echtzeitvalidierung und Echtzeitkontrollverfahren
- Implementierung neuer Verfahren und Methodentransfer
- Gruppenarbeit Methodenvalidierung und Anlagenqualifizierung
- Übungen und Seminare zur Methodenentwicklung und Prozessvalidierung
- Änderungskontrolle / Umgang mit Abweichungen
- Tracking / Tracing
- Moderne CAPA-Strategien / Beispielssysteme
- Freigabesysteme und Strategien für automatisierte Prozesse

Data Sciences

- Grundlagen des maschinellen Lernens
- Untersuchen und Analysieren von Daten mit Python
- Umgang und Analyse von Prozess- und spektroskopischen Daten/ "Data mining"

_	_
	- Vielfalt von "Data mining" und Datentypen
	- Gewinnung von Erkenntnissen und Schlussfolgerungen
	Dokumentation
	- Änderungskontrolle und regulatorische Compliance
	- Automatisierung und GMP-Dokumentation
	- Trends bei der Qualifizierung von vollautomatisierten Systemen
	QS- und Data-Analytics-Teilübungen
	- Übungen zur SPC, Hypothesenformulierung und –tests
	- Qualitätskontrollkarten mit Wiederfindungsrate und
	Trendanalyse
	- Einführung in die multivariable Datenanalyse und
	Datenmanagement
	- Clusteranalyse und Datenorchestrierung
	- Python-Programmierung
Literatur	- Fachzeitschrift: pharmind; Editio Cantor Verlag ISSN 0031-711X
	- Gad, S. C. (Ed.). (2008). Pharmaceutical manufacturing handbook: production and processes (Vol. 5). John Wiley & Sons
	- Ermer, J., & Miller, J. H. M. (Eds.). (2014). Method validation in pharmaceutical analysis: A guide to best practice (2 nd Edition). John Wiley & Sons
	- Europäisches Arzneibuch 11. Ausgabe, Amtliche deutsche Ausgabe (2011), ISBN 978-3-7692-8330-3
	- Kromidas, S. (2011). Validierung in der Analytik. 2. Auflage,
	John Wiley & Sons
	- Box, G. E., Hunter, J. S., & Hunter, W. G. (2005). Statistics for
	experimenters: design, innovation, and discovery (Vol. 2). New
	York: Wiley-Interscience
	- Viswanathan, C. T., Bansal, S., Booth, B., DeStefano, A. J.,
	Rose, M. J., Sailstad, J., & Weiner, R. (2007). Quantitative bioanalytical methods validation and implementation: best

- practices for chromatographic and ligand binding assays. Pharmaceutical research, 24 (10), 1962-1973
- Schweitzer, M., Pohl, M., Hanna-Brown, M., Nethercote, P., Borman, P., Hansen, G., ... & Larew, J. (2010). Implications and opportunities of applying QbD principles to analytical measurements. Pharmaceutical Technology, 34 (2), 52-59
- ICH-Q-Richtlinien (Q2, Q6, Q7, Q8, Q9, Q10, Q12)
- U.S. FDA Guidance for Industry: Bioanalytical Method Validation (2018)
- Ledolter, J., & Burrill, C. W. (2005). Statistical quality control: Strategies and tools for continual improvement. 2. Auflage, Wiley
- Christ, G. A., Harston, S. J., & Hembeck, H. W. (1998). GLP-Handbuch für Praktiker. 2. überarbeitete Auflage, GIT Verlag.
- EG-Leitfaden der Guten Herstellungs-Praxis für Arzneimittel und Wirkstoffe, 10. Auflage, ISBN 3-87193-417-9
- GMP-Berater, Nachschlagewerk für Pharmaindustrie und Lieferanten, Maas & Peither, GMP Verlag
- Bhatt, V. (1998). GMP Compliance, Productivity & Quality. CRC Press
- Behr, A., Agar, D.W., Jörissen, J. & Vorholt, A.J. (2016). Technische Chemie. Springer-Verlag
- Schwister, K., & Leven, V. (2020). Verfahrenstechnik für Ingenieure: Ein Lehr-und Übungsbuch. 4. Auflage, Carl Hanser Verlag GmbH Co KG
- Data Quality Framework for EU medicines regulation (EMA/326985/2023)
- Kelleher, J.D., B. Mac Namee, A. Darcy (2020). Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. 2. Auflage. The MIT press.
- J. Han, J. Pei, J. Tang. (2022). Data Mining: Concepts and Techniques. 4. Auflage, Elsevier, Morgan Kaufmann Publishers.

Modulnummer	2.2a
Modultitel	Grundlagen der Betriebswirtschaftslehre
Modulkürzel	GBWL
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften
	(M.Sc.)
Ort der Veranstaltung	Universität Ulm
Modulverantwortlichkeit	Prof. Dr. Rouven Trapp
Lehrende	Prof. Dr. Rouven Trapp
Voraussetzungen	
Verwertbarkeit	Das Teilmodul bietet zusammen mit dem Teilmodul 2.2b "Key-
	Account und Pharma-Marketing" die Möglichkeit grundlegende
	wirtschaftswissenschaftliche Kenntnisse zu erwerben, vom Aufbau
	eines Betriebs über die Produktion bis zu Marketing, Investition und
	Finanzierung und betriebswirtschaftlichem Rechnungswesen. Es
	vermittelt somit das Basiswissen für wirtschaftlich erfolgreiches
	Handeln im Unternehmen.
Semester (empfohlen)	1 bzw. 2
Max. Teilnehmerzahl	25
Art der Veranstaltung	□Präsenzveranstaltung(en)
	⊠Präsenzveranstaltung(en) mit E-Learning-Elementen
	□Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	2
Veranstaltungssprache	⊠Deutsch, □Englisch, □Weitere, nämlich:
ECTS-Credits	3 Credits
Prüfungsform und –umfang	⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, ⊠Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale

	Zusätzlich zur Klausur findet ein Präsenztermin statt. Die Teilnahme am Präsenztag ist Voraussetzung für die Zulassung zur Modulprüfung. <u>Umfang der Prüfung:</u> 120 Min Klausur
Lernziele	Die Studierenden erlernen in diesem Modul betriebswirtschaftliche Grundkenntnisse.
	Dieser Kurs soll die Teilnehmenden dazu befähigen, die Zusammenhänge zwischen Leistungs- und Finanzkreislauf zu erkennen, die Auswirkungen von Veränderungen auf die Bilanz und die Erfolgsrechnung zu bewerten und daraus grundlegende Schlussfolgerungen für die Unternehmensführung abzuleiten.
	Hierzu gibt das Modul einen Überblick über fünf wichtige Themengebiete der Betriebswirtschaftslehre (BWL): Aufbau des Betriebes, Produktion, Marketing, Investition und Finanzierung sowie Betriebswirtschaftliches Rechnungswesen. Auf Basis dieses Einführungsmoduls sind die Teilnehmer/Innen in der Lage, wichtige Aspekte in der Betriebswirtschaftslehre zu überschauen, wiederzugeben und darauf aufbauend weitere vertiefende Kenntnisse in den einzelnen Themengebieten zu erlangen.
Lehrinhalte	 Aufbau eines Betriebes Produktion Marketing Investition und Finanzierung Betriebswirtschaftliches Rechnungswesen
Literatur	 Wöhe, G. W./Döring, U. (2013): Einführung in die Allgemeine Betriebswirtschaftslehre, 25. Auflage, München Wöhe, G. W./Kaiser, H./Döring, U. (2013): Übungsbuch zur Einführung in die Allgemeine Betriebswirtschaftslehre, 12. Auflage, München

Modulnummer	2.2b
Modultitel	Key Account und Pharma-Marketing
Modulkürzel	KAPM
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Hochschule Biberach
Modulverantwortlichkeit	Prof. Dr. Chrystelle Mavoungou-Pfäffle
Lehrende	Krystyna Hinder
Voraussetzungen	
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang
	Biopharmazeutisch-Medizintechnische Wissenschaften
	verwendbar. Das Modul vermittelt Fachwissen im Bereich Key
	Account & Pharma-Marketing.
Semester (empfohlen)	2
Max. Teilnehmerzahl	16
Art der Veranstaltung	□Präsenzveranstaltung(en)
	⊠Präsenzveranstaltung(en) mit E-Learning-Elementen
	□Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	1
Veranstaltungssprache	⊠Deutsch, □Englisch, □Weitere, nämlich:
ECTS-Credits	3 Credits
Prüfungsform und –umfang	⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, ⊠Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung: 60 Min Klausur
Lernziele	Fachkompetenz
	Die Studierenden erwerben Kompetenzen und ein fundiertes
	Fachwissen über das Key Account Management in der
	pharmazeutischen und Medizinproduktindustrie und können dieses
	1 *

sicher anwenden und mit Prozessen in eben diesen Bereichen in Verbindung setzen. Sie verfügen über Kenntnisse Pharmamarketing, verstehen die Produkt- und Preispolitik, die Vertriebspolitik sowie die Promotion in Deutschland und sind in der Lage diese Abläufe zu beschreiben. Sie verfügen über Marktkenntnisse und sind in ihrer Funktion in der Lage internen Abteilungen, Vertrieb, Marketing, Marktforschung und ggfs. die wissenschaftlichen Abteilungen, einschließlich Forschung und Entwicklung zu unterstützen. Dazu wenden Sie ihre theoretischen Kenntnisse sicher an und übertragen diese auf die entsprechenden Situationen an ihrem Arbeitsplatz. Die Studierenden transferieren die im Unterricht und Seminaren gewonnenen Kenntnisse damit in einen anderen Kontext. Sie können Personen, Gruppen oder Institutionen, die für - im Verhältnis gesehen – größere bzw. große Umsatzvolumina aktuell stehen oder diese beeinflussen können, oder sich in Zukunft in dieser Richtung entwickeln, betreuen und in diesem Rahmen ihre Kompetenzen anwenden, Prozesse beurteilen und Entscheidungen herbei führen.

Methodenkompetenz

Die Studierenden sind in der Lage Marktsituationen unter zu Hilfenahme ihrer theoretischen Kenntnisse korrekt einzuschätzen. Dies betrifft auch Abläufe im Pharmamarketing. Die Studierenden haben fundierte Kenntnisse über das Gesundheitswesen in Deutschland erlangt, was sie dazu befähigt Prozesse korrekt zu analysieren und Sachverhalte in Zusammenhängen interpretieren. Sie können darüber hinaus die wesentlichen Elemente Projektsteuerung der benennen und Anwendungsoptionen formulieren. Die Studierenden sind nach dem Modul in der Lage Key Account Strategien für den Pharmamarkt bzw. für den Medizinproduktmarkt zu entwickeln. Sie können diese sowohl schriftlich als auch verbal korrekt kommunizieren und präsentieren.

Selbst- und Sozialkompetenz

	Die Studierenden entwickeln durch die benannte Fach- und Methodenkompetenz Verhandlungsgeschick zum Beispiel bei der Entwicklung und Kommunikation von Key Account Strategien. Sie üben eine Haltung ein, die notwendig ist, um den Bereich des Pharmamarketings und des Key Accounts zu vertreten. In Diskussion mit dem Lerngegenstand reflektieren sie ihre eigenen Einstellungen und bauen im Besonderen ihre Fähigkeit zu strategischem Denken und Handeln aus.
Lehrinhalte	 Pharmamarkt in der EU und in Auszügen den USA, Japan und Rest der Welt Gesundheitswesen vs. Gesundheitsmarkt Voraussetzung für Account Management Arten von Accounts Biopharma Key Accounts: Key Account Strukturen und Key Account Management Prozesse Ziele und Strategien für das Pharma Key Account Management Grundlagen des Pharmamarketings und Abgrenzung gegenüber Consumer Marketing Verständnis des "Kunden" Arzt und Patient
Literatur	 R. Seiler & H. Wolfram, <i>Pharma Key Account Management</i>, 2011, Medizinisch Wissenschaftliche Verlagsgesellschaft mbH & Co KG. C. Belz, M. Müllner, D. Zupancic, <i>Spitzenleistungen im Key Account Management: Das St. Galler KAM-Konzept</i>, 3. Auflage, 2014, Verlag Franz Vahlen München Mathias Droll: <i>Kundenpriorisierung in der Marktbearbeitung</i>, Wiesbaden 2008 Hartmut H. Biesel: <i>Key Account Management erfolgreich planen und umsetzen</i>, 2. Auflage, Wiesbaden 2009 K. Kotler, G. Armstrong, et.al.: <i>Grundlagen des Marketing</i>, 6., aktualisierte Auflage 2016

Modulnummer	2.3
Modultitel	Projektmanagement und Professional Skills
Modulkürzel	PPS
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Hochschule Biberach
Modulverantwortlichkeit	Krystyna Hinder
Lehrende	Krystyna Hinder: wissenschaftliches Arbeiten, Professional Skills I
	[2 Credits]
	Krystyna Hinder: Projektmanagement, Professional Skills II [4 Credits]
Voraussetzungen	Grundkenntnisse in MS Office (Word/PowerPoint) und
	Internetrecherchen
Verwertbarkeit	Sie kennen die Grundlagen für wissenschaftliches Arbeiten und
	verschiedene Präsentationstechniken. Diese können für
	wissenschaftliche Fragestellungen in Studium und Beruf verwendet
	werden.
Semester (empfohlen)	1 (2)
Max. Teilnehmerzahl	20
Art der Veranstaltung	□Präsenzveranstaltung(en)
	⊠Präsenzveranstaltung(en) mit E-Learning-Elementen
	□Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	1
Veranstaltungssprache	⊠Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	□Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, ⊠Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	⊠Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	Vortrag mit anschließender Diskussion
	1 -

Lernziele	Fachkompetenz
	Die Studierenden können die Grundlagen des Wissenschaftlichen
	Arbeitens (Literaturrecherche, Paper lesen & Schreiben, usw.)
	beschreiben und auf ihre eigene Tätigkeit übertragen.
	Die Studierenden können die zentralen Methoden zum Zeit- und
	Selbstmanagement erläutern und anwenden. Dabei ist es den
	Studierenden möglich eine Methode hinsichtlich ihrer praktischen
	Funktionalität im eigenen (Berufs-) Alltag zu überprüfen.
	Die Studierenden können verschiedene Theorien der
	Kommunikation, unter anderem das Feedback, benennen,
	wiedergeben und anwenden.
	Verschiedene Modelle zur Führung, Konfliktmanagement und
	Problemlösetechniken sind den Studierenden geläufig und können
	von diesen unterschieden werden.
	Methodenkompetenz
	Die Studierenden können die Methoden der Präsentation und
	Gesprächsmoderation umsetzen und auf die Situation abstimmen.
	Zusätzlich werden verschiedene Aspekte der Innovation und
	Kreativität vermittelt, die von den Studierenden erläutert und
	angewendet werden können.
	Die Studierenden können die Regeln des Feedbacks sowie
	grundlegende Elemente für eine erfolgreiche Moderation von
	kleinen und großen Gruppen benennen und anwenden.
	Die Studierenden können die Bestandteile der Projektkoordination
	an ausgewählten Beispielen erläutern und in ihre eigene Arbeit
	implementieren.
	Selbst- und Sozialkompetenz
	Die Zusammenhänge von Führung und sozialem Verhalten im
	Team sind den Studierenden bekannt und können von diesen
	beurteilt werden.

	Die Studierenden können die eigene kommunikative Kompetenz in praktischen Übungen mit Unterstützung der Kommilitonen/Kommilitoninnen erfassen, evaluieren und verbessern. Die Studierenden können eine Strategie für das Selbstmarketing entwickeln und anwenden.
Lehrinhalte	Professional Skills I
	- Wissenschaftliches Arbeiten:
	- Literaturrecherche
	- Paper lesen und schreiben
	- Verfassen einer wissenschaftlichen Arbeit
	- DFG-Qualitätskriterien
	- Zitation von Literaturquellen
	- Präsentation und Moderation
	Professional Skills II
	- Zeit- und Selbstmanagement, Multitasking
	- Kommunikation und Gesprächsführung
	- Feedback
	- Selbstmarketing (Persönlichkeitsentwicklung)
	Projektmanagement
	- Führung, Team, Konflikte, Problemlösetechniken
	- Innovation und Kreativität (-stechniken)
	- Datenaufbereitung
	- Projektkoordination
Literatur	- Wissenschaftliches Arbeiten: Wissenschaft, Quellen, Artefakte,
	Organisation, Präsentation; Helmut Balzert, Marion Schröder,
	Christian Schäfer, 1. Auflage (2008) bzw. 2. Auflage (2011);
	ISBN: 3937137599
	- Schreiben und Publizieren in den Naturwissenschaften; Hans
	Ebel, Claus Bliefert, Walter Greulich, 2006; ISBN: 3527308024

- Bachelor-, Master- und Doktorarbeit: Anleitungen für den naturwissenschaftlich-technischen Nachwuchs; Hans Ebel, Claus Bliefert, 2. Auflage (2011); ISBN: 3527324771
- Projektmanagement: "Modernes Projektmanagement: Mit traditionellem, agilem und hybridem Vorgehen zum Erfolg" ISBN 978-3527530489
- Führung: "Das Ende der Anweisung" ISBN 978-3869367927
- Personal Skills: "The 7 Habits of Highly Effective People: Powerful Lessons in Personal Change" ISBN 978-1476740058 oder auf Deutsch: "Die 7 Wege zur Effektivität: Prinzipien für persönlichen und beruflichen Erfolg" ISBN 978-3869368948
- Feedback: "Führung: Feedback auf Augenhöhe: Wie Sie Ihre Mitarbeiter erreichen und klare Ansagen mit Wertschätzung verbinden (essentials)" ISBN 978-3658157302

Modulnummer	2.4
Modultitel	Nachhaltigkeit & Umweltaspekte
Modulkürzel	NU
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Universität Ulm
Modulverantwortlichkeit	Dr. Frank Rosenau
Lehrende	Dr. Frank Rosenau
Voraussetzungen	
Verwertbarkeit	Das Modul unterstützt Entscheidungsfindungen in Fragen der
	Kombination von Umwelt- und Nachhaltigkeitsaspekten. Es ist
	damit im Masterstudiengang Biopharmazeutisch-
	Medizintechnische Wissenschaften, aber auch für andere
	naturwissenschaftliche Studiengänge, die sich mit Fragestellungen
	zu Umwelt und Nachhaltigkeit befassen, anwendbar.
Semester (empfohlen)	2
Max. Teilnehmerzahl	25
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	2
Veranstaltungssprache	⊠Deutsch, □Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	□Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	⊠Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	Eine mündliche Präsentation (20 – 30 Min) mit Diskussion fließt zu
	100% in die Notengebung ein.

Lernziele

Fachkompetenz

Die Studierenden kennen verschiedene (Wirk-)Stoffe sowie chemische und biotechnologische Prozesse und sind in der Lage, deren Vor- und Nachteile zu erkennen, zu beurteilen und bezüglich ökonomischer und ökologischer Vor- und Nachteile zu vergleichen.

Nachhaltigkeitsaspekte werden von den Studierenden frühzeitig in die Entwicklung neuer Prozesse integriert und als Qualitätskriterium nutzbar gemacht.

Die Studierenden erwerben eine Argumentationsfähigkeit, warum ein bestimmter Produktionsweg bevorzugt eingeschlagen werden sollte.

Darüber werden unterschiedliche Methoden und Verfahren erlernt, die zum Kompetenzerwerb bzgl. einer Entscheidungsfindung bezüglich Nachhaltigkeit und Umwelt helfen können.

Methodenkompetenz

Die Studierenden erlangen die Fähigkeit, über chemische/ synthetische, biologisch/ biotechnologische, verfahrenstechnische und grundlegend (sozio-)ökonomische Erwägungen hinaus fundierte Einschätzungen und vertiefte Beurteilungen über die Nachhaltigkeit von Prozessen zu treffen.

Die Studierenden können Nachhaltigkeitsuntersuchungen mittels spezieller Software (z. B. Sabento) in der Planung von Projekten umsetzen.

Selbst- und Sozialkompetenz

Die Studierenden lernen sich kritisch mit dem Verfahrensprozess der Produktentwicklung auseinanderzusetzen.

Die Studierenden gelangen zu einem eignen Schluss, den sie mit aussagekräftigen und belegbaren Argumenten unterstützen können.

Lehrinhalte	Materialen und Prozesse
	- Biotechnologische Verfahrenstechniken
	- Synthetische Verfahrenstechniken
	- Thermische Verfahrenstechniken
	- Nanotechnik
	Methoden
	- Faktensammlung/Recherche
	- Pro-Kontra Liste
	- Entscheidungsmatrix
	- Nutzwertanalyse
	- Entscheidungsbaum
	- Szenarioanalyse
	- Softwarebedienung (z. B. Sabento)
	Anwendung an einem Beispiel
Literatur	- Aktuelle Fachliteratur

Modulnummer	3.1
Modultitel	Upstream Processing (USP), Downstream Processing (DSP) and Process Optimization
Modulkürzel	UDP
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Hochschule Biberach
Modulverantwortlichkeit	Prof. Dr. Antje Labes
Lehrende	Prof. Dr. Antje Labes
Voraussetzungen	Fachwissenschaftliche Grundlagen
Verwertbarkeit	Kenntnisse in der Herstellung von Biopharmaka sind verwendbar
	für spätere Arbeiten in der Industrie, welche sich im Themenfeld
	der Prozessentwicklung sowie der Herstellprozesse befinden. Dazu
	zählen auch Arbeiten zur Charakterisierung von Prozessen und
	deren Robustheit. Es werden wichtige Aspekte zur
	biopharmazeutischen Wirkstoffproduktion vermittelt.
Semester (empfohlen)	2 bis 3
Max. Teilnehmerzahl	12
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	2
Veranstaltungssprache	□Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	□Klausur, □Referat, □Kolloquium, ⊠Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:

	Erstellung eines Posters Format A0 mit mindestens einer graphischen Darstellung (z.B. Flussdiagramm, Zeichnung) und wissenschaftlichen Verweisen. Präsentation des Posters am Praktikum: 15 min pro Person mit Diskussion. Gruppenarbeiten sind bis max. 3 Mitglieder erlaubt. Inhalte der einzelnen Mitglieder müssen kenntlich gemacht werden. Notengewichtung Poster und Präsentation: 50/50 Prüfungssprache ist Deutsch oder Englisch
Lernziele	Fachkompetenz Die Studierenden können die verschiedenen Möglichkeiten der Prozessführung für die Kultivierung von verschiedenen Zellsystemen beschreiben. Zusätzlich können die Studierenden Massenbilanzen für die Prozesse ableiten und einfache Vorhersagen bezüglich des Zellwachstums und Substratverbrauchs berechnen. Darüber hinaus sind die Studierenden in der Lage kostenrelevante Faktoren zu identifizieren. Die Studierenden können die verschiedenen Aufarbeitungstechniken von pharmazeutischen Proteinen und die relevanten Einflussfaktoren aufzählen und beschreiben. Die Studierenden sind in der Lage, Risikoanalysen durchzuführen und Prozesse einem strukturierten Optimierungsprozess zu unterziehen. Methodenkompetenz Die Studierenden können einen Bioreaktor bedienen und die wesentlichen Parameter ermitteln. Außerdem können sie eine skalierbare Chromatographie im Labor durchführen und die kritischen Aspekte in Prozessen beurteilen.

	Die Studierenden lernen ihr analytisches Denken anzuwenden und auf verschiedene Probleme zu übertragen.
	Selbst- und Sozialkompetenz Durch Lernbereitschaft, Kreativität und Belastbarkeit können die Studierenden sowohl selbstständig als auch im Team komplexe Aufgaben lösen.
Lehrinhalte	Upstream Processing (USP) - Ökonomische Aspekte der Prozessentwicklung - Bioreaktoren: Mischer und Reaktortypen - Zellwachstum in Bioreaktoren: Kinetik, Massenbilanzen und Prozessführung, Wachstumsmodelle - Bioprozessanalytik und Steuerung: Sensoren, Automatisierung - Transportvorgänge in Biosuspensionen Downstream Processing (DSP)
	 Allgemeine Aspekte der biotechnologischen Aufarbeitung Prozesschromatographie, chromatographische Parameter, Arten der Chromatographie, Radialchromatographie, kontinuierliche Chromatographie Monollithische Säulen, Membranadsorber Filtration: Dead-End-Filtration, Tangentialflussfiltration, Tiefenfiltration, Membranfiltration Kristallisation und Aggregation, Zwei-Phasensysteme Zellaufschlussmethoden Virussicherheit
	 Process Optimization Prozessüberblick (Prozessdarstellung, Ermittlung der wichtigsten Prozessspezifikationen (CTQs)) Prozessdarstellungen und Identifikation von Einflussgrößen, Grafische Darstellung von Prozessdaten: Urwertkarte, Medianzyklen-Diagramm, Histogramme, Streudiagramme, signifikante und zufällige Unterschiede

	 Prüfsysteme: Geeignete Messsysteme und Eignungsnachweis von Prüfprozessen (Bias, Wiederholpräzision, Vergleichspräzision, Linearität und Stabilität), systematische Messabweichung, GR&R-Studie Prozessfähigkeit: cpk-Wert, Prozessfähigkeitsindizes u.ä. nach DIN ISO 21747 Prozessanalyse: Regressionsanalyse, kurze Einführung/Wiederholung in die statistische Versuchsplanung Prozessverbesserung: Poke-Yoka-Prinzip, 635-Mehtode, Risikoanalyse mit FMEA und Fehlerbaumanalyse
Literatur	 Bioprozesstechnik, Horst Chmiel, 3. Auflage, Spektrum-Verlag Bioverfahrensentwicklung, Winfried Storhas, 2. Auflage, Wiley-VCH Nullfehlermanagement, Johann Wappis und Berndt Jung, 4. Auflage, Hanser-Verlag

Modulnummer	3.2a
Modultitel	Methoden der Molekularbiologie
Modulkürzel	MMol
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Universität Ulm
Modulverantwortlichkeit	Prof. Dr. Anita Marchfelder
Lehrende	Prof. Dr. Anita Marchfelder
Voraussetzungen	
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang
	Biopharmazeutisch-Medizintechnische Wissenschaften
	verwendbar. Das Modul vermittelt Fachwissen im Bereich
	Methoden der Molekularbiologie und Anwendungsbeispiele.
Semester (empfohlen)	1
Max. Teilnehmerzahl	16
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	2
Veranstaltungssprache	□Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	3 Credits
Prüfungsform und –umfang	⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, ⊠Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Harford In Design
	Umfang der Prüfung:
	60 Min Klausur
Lernziele	Fachkompetenz
	Studierende, die dieses Modul erfolgreich absolviert haben besitzen
	einen theoretischen Überblick über alle gängigen Methoden, die in
	1 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

der Molekularbiologie bzw. beim molekularbiologischen Arbeiten zur Anwendung kommen und können diese Methoden sowohl benennen als auch erklären. Sie sind in der Lage, die Funktionsweise dieser Methoden mit neuen und unbekannten Substraten nachzuvollziehen und damit ihr Wissen unter zu Hilfenahme von Prozesskenntnissen in neue Situationen zu übertragen. Außerdem kennen Sie Anwendungsbeispiele für die vorgestellten molekularbio-logischen Methoden. Darüber hinaus haben sie ein Verständnis für molekulargenetische Analysen, können diese anwenden und beurteilen. Die Studierenden sind in der Lage, aufbauend auf ihrem theoretischen, methodischen Verständnis zu entscheiden, welche Methoden bei welcher wissenschaftlichen Fragstellung und für welche Analysefrage angewendet werden müssen. Darauf aufbauend können sie Lösungen generieren und theoretisch begründen.

Methodenkompetenz

Die Studierenden verfügen nach dem Modul über die Fähigkeit molekularbiologische Techniken und Analysen grundlegend durchzuführen. Die können dabei einen eigenen Methoden- und Analyseplan aufstellen und diese den Rahmenbedingungen anpassen. Sie sind in der Lage, die Ergebnisse von solchen Analysen schriftlich und verbal zu kommunizieren und zu präsentieren. Des Weiteren können sie molekularbiologische Techniken und Analysen dokumentieren und sind in der Lage, im Sinne einer Versuchsplanung Vor- und Nachbereitungen zu planen und durchzuführen. Die Studierenden gewinnen weiterhin ein Verständnis diesen Methoden im Umgang mit Analyseverfahren, einerseits hinsichtlich der Empfindsamkeit, andererseits hinsichtlich der Gefahreneinschätzung im Umgang mit molekularbiologischem Material.

Selbst- und Sozialkompetenz

Durch die Struktur des Moduls sind die Studierenden anschließend in der Lage, einen Vortrag selbständig vorzubereiten und

	darzubieten. Sie haben ihr Fachwissen im Bereich der Molekularbiologie auf Originalarbeiten aus der aktuellen Forschung erweitert, auch im Hinblick auf das spätere Präsentieren eigener Forschungsergebnisse. Damit sind sie vertraut im Umgang mit Primärliteratur, bauen ihre Recherchefähigkeiten auf und reflektieren den Inhalt von Literatur auch kritisch. Die Studierenden haben Erfahrungen bezüglich der aktiven Teilnahme an Diskussionen gesammelt und können sich aktiv in Fachgespräche einbringen.
Lehrinhalte	Grundlegende Methoden der Molekularbiologie PCR und verschiedene DNA-Polymerasen Analyse von DNA-Fragmenten Klonieren "Omics"-Methoden Analyse von RNA In situ-Hybridisierung Northern Blot-Hybridisierungsverfahren Quantitative Echtzeit-PCR (qRT-PCR) Circularised RT-PCR (crRT-PCR) Rapid Amplification of cDNA Ends (RACE) Gel-Retardations-Experimente (EMSA) Transkriptomanalysen Generierung und Charakterisierung von rekombinanten Proteinen Expressionssysteme Induktion der Genexpression Isolation und Reinigung rekombinanter Proteine Charakterisierung rekombinanter Proteine Enzyme-linked Immunosorbent Assay (ELISA) Anwendungsbeispiel: Charakterisierung des C2-Toxins von Clostridium botulinum
	- Methoden zur Proteomanalyse

	Protein-Protein-Interaktionen
	- Das Two-Hybrid-System und abgeleitete Protein-Interaktions-
	Testsysteme Testsysteme
	- Tandem-Affinitätsreinigung
	- In vitro-Interaktionsanalyse: GST-Pulldown
	- Ko-Immunpräzipitation
	- Far-Western
	- Oberflächen-Plasmonenresonanzspektroskopie
	- Förster-Resonanz-Energietransfer (FRET)
	- Analytische Ultrazentrifugation
	Sequenzierverfahren
	- DNA-Sequenzierung
	- RNA-Sequenzierung
	- Protein-Sequenzierung
	Mutagenese und Genommodifikation
	- Konventionelle Mutagenese
	- Genome Editing (Zinkfinger, TALEN, CRISPR-Cas)
	Bildgebende Verfahren
	- Autoradiographie
	- Lumineszenz
	- Fluoreszenz
	- Biolumineszenz
	Malakulauhiala sisah a Ühum san im I ahau
	 Molekularbiologische Übungen im Labor Produktion der <i>Taq</i>-DNA-Polymerase mit rekombinanten
	Escherichia coli-Zellen
	- Produktion der <i>Taq</i> -DNA-Polymerase
	- Anreicherung und Reinigung des Proteins
	- Überprüfung der Anreicherung
	- Funktionsnachweis der <i>Taq</i> -DNA-Polymerase
	2 millionomati vito del 104 pri il orginomato
Literatur	- Mülhard (2013). Der Experimentator: Molekularbiologie,
	Genomics, 7. Aufl., Springer Spektrum Verlag
	- Rehm, Letzel (2016). Der Experimentator: Proteinbiochemie,
	Proteomics, 7. Aufl., Springer Spektrum Verlag
	1 Totolius, T. Maii., Springer Spektrum veriag

- Nordheim, Knippers (2015). *Molekulare Genetik*, 10. Aufl., Thieme Verlag
- Alberts, Johnson, Lewis, Morgan, Raff, Roberts, Walter (2017). *Molekularbiologie der Zelle*, 6. Aufl., Garland Publishing (entspricht der englischen Version von 2014, Wiley-Verlag)
- Lottspeich, Engels (2012). *Bioanalytik*, 3. Aufl., Springer Spektrum Verlag
- Voet, Voet, Pratt (2010). *Lehrbuch der Biochemie*, 2. Aufl., Wiley-VCH Verlag
- Lewin B.: *Essential Genes*, 3. Aufl. Pearson Education, Inc., Upper Saddle River, NJ 07458, USA, 2013
- Renneberg R.: *Biotechnologie für Einsteiger*, 4.Aufl., Elsevier Spektrum Akademischer Verlag, Heidelberg, 2012

Modulnummer	3.2b
Modultitel	Cell Line Engineering
Modulkürzel	CLE
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Hochschule Biberach
Modulverantwortlichkeit	Prof. Dr. Chrystelle Mavoungou-Pfäffle
Lehrende	Dr. Lothar Steeb
Voraussetzungen	
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang
	Biopharmazeutisch-Medizintechnische Wissenschaften
	verwendbar und ist eng gekoppelt an Modul 3.2a. Das Modul
	vermittelt Fachwissen im Bereich Produktion von
	Biopharmazeutika, insbesondere der Entwicklung und
	Optimierung von eukaryontischen Produktionszelllinien.
Semester (empfohlen)	Gleiches Semester wie 3.2a
Max. Teilnehmerzahl	25
Art der Veranstaltung	□Präsenzveranstaltung(en)
	⊠Präsenzveranstaltung(en) mit E-Learning-Elementen
	□Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	1
Veranstaltungssprache	□Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	3 Credits
Prüfungsform und –umfang	⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	60 Min Klausur
	Prüfungssprache ist Deutsch.

Lernziele	Fachkompetenz
Lemziele	-
	Studierende kennen die wichtigsten Grundbegriffe und Zelltypen
	und können diese definieren und voneinander abgrenzen.
	Die Studierenden können wichtige molekularbiologische Methoden
	nennen und erläutern.
	Die Studierenden kennen wichtige rechtliche Grundlagen des Cell
	Line Engineering und können diese erklären.
	Anhand von aktueller Fachliteratur lernen die Studenten
	verschiedene Vorgehensweisen der Zelllinien-Entwicklung.
	Studierende können anhand vorgegebener Fragestellungen die
	Prinzipien der Zelllinien-Entwicklung erläutern.
	Methodenkompetenz
	Die Studierenden können die wichtigsten Schritte der Isolierung
	und Kultivierung erläutern und Probleme lösen.
	Selbst- und Sozialkompetenz
	Die Studierenden können durch ihre Lernbereitschaft ihr
	Fachwissen mit Inhalten anderer Module verknüpfen und durch das
	Lesen von Originalfachliteratur erweitern.
Lehrinhalte	Einführung
	- Grundbegriffe
	- QM in der Zellkultur
	- Standardisierung in den Zellkulturexperimenten
	Rechtliche Grundlagen und Gewebequellen
	- Ethik
	- Compliance
	- Nutzungsrechte
	- Zuverlässige Quellen für Gewebe
	0 (

	Isolierung und Kultivierung - Vorüberlegungen zur Isolierung - Isolierung
	- Kultivierung in 2D oder 3D und passende Tools
	Kulturbedingungen- Umgebung- Nährlösungen
	Zelltypen - Echte Primärzellen - Zelllinien
	Eingriffsmöglichkeiten in die Zelle - Genetic engineering - Transduction
	Produktionszellen oder Forschungszellen
Literatur	

Modulnummer	3.3
Modultitel	Arzneimittelzulassung und Recht
Modulkürzel	AZR
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Hochschule Biberach
Modulverantwortlichkeit	Prof. Dr. Chrystelle Mavoungou-Pfäffle
Lehrende	Prof. Dr. Chrystelle Mavoungou-Pfäffle: Arzneimittelzulassung
	(DE, EU, US, JP und RoW)
	Jens Heller: eCTD
	Dr. Dr. Gerhard Mehrke: Gentechnik - Gesetze, Verordnungen und
	ethische Gesichtspunkte
	Lydia Neumann: Patentrecht, Ethik-Recht
Voraussetzungen	
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang
	Biopharmazeutisch-Medizintechnische Wissenschaften
	verwendbar. Das Modul vermittelt Fachwissen zu Grundlagen der
	Arzneimittelzulassung in der EU, der USA, Japan sowie in dem
	Rest der Welt sowie einen Überblick in Pharmakovigilanzprozesse
	im Postmarketing. Darüber hinaus wird Fachwissen im Bereich
	Patent- und Ethikrecht sowie in Gentechnik.
Semester (empfohlen)	2
Max. Teilnehmerzahl	45
Art der Veranstaltung	□Präsenzveranstaltung(en)
	⊠Präsenzveranstaltung(en) mit E-Learning-Elementen
	□Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	⊠reine E-Learning-Veranstaltung(en)
Präsenztage	3
Veranstaltungssprache	⊠Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, ⊠Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, ⊠Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,

	□Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung: Arzneimittelzulassung → 15 Min Vortrag + 5 Min Diskussion Recht → 90 Min Klausur (Gewichtung im Rechtteil: Gentechnikrecht 1,2; Patentrecht 1,8)
Lernziele	Fachkompetenz Die Studierenden kennen die wichtigsten Arzneimittelbehörden und sind in der Lage Arzneimittelregelwerke aufzuzählen und zu erläutern. Die Studierenden kennen Arzneimittelverfahren und Registrierungsverfahren in Deutschland, weiteren EU-Ländern, der USA und Japan und können diesbezüglich unter Berücksichtigung von Länderbesonderheiten und Rechtsgrundlagen eine eigene Strategie erarbeiten. Die Studierenden kennen die wichtigsten Gesetze im Pharmarecht (national und international), Patentrecht, Ethik-Recht und Gentechnikrecht und können deren Inhalte erläutern und anwenden.
	Die Studierenden können differenzieren, welche Bedeutung eine Marktgenehmigung von Arzneimitteln und Arzneimittel-Medizinproduktkombinationen mit dem Schutz der öffentlichen Gesundheit hat.
	Die Studierenden können Maßnahmen und Kontrollmechanismen im Produktlebenszyklus von Zulassungen ermitteln, beurteilen und umsetzen.
	Methodenkompetenz Die Studierenden kennen wichtige Aspekte der Projektsteuerung und können diese in eine selbstständig geplante Strategie implementieren.

Die Studierenden können eine regulatorische Strategie bei neuen bzw. bekannten Wirkstoffen von der pharmazeutischen Entwicklung bis zur Zulassung und im Postmarketing selbstständig entwickeln.

Die Studierenden können eine Strategie in der Arzneimittelüberwachung und -sicherheit umsetzen und beurteilen. Die Studierenden können Inhalte der regulatorischen Compliance benennen und umsetzen.

Selbst- und Sozialkompetenz

Die Studierenden können durch ihre Kommunikations- und Schnittstellenkompetenz die Inhalte aus Arzneimittelzulassung und Recht erläutern und dieses Wissen mit Lerninhalten anderer Module verknüpfen.

Lernbereitschaft und Belastbarkeit helfen den Studierenden Anwendungsaufgaben zu analysieren und Lösungen zu erörtern. Mithilfe von Durchsetzungsstärke und Toleranz können die Studierenden sowohl selbstständig als auch im Team komplexe Aufgaben lösen.

Lehrinhalte

Grundlagen der Arzneimittelzulassung

- Von der pharmazeutischen Entwicklung bis zur Zulassung
- Arzneimittelbehörden (EU-Mitgliedstaaten, USA, Japan und Rest der Welt)
- Definitionen: Arzneimittelbegriff, Generika, Biosimilars, OTC, OTX
- Nutzen-Risiko-Verhältnis
- Sicherheit (safety), Qualität (quality), Wirksamkeit (efficacy)

Zulassungsverfahren & Länderbesonderheiten

- Deutschland: nationales Verfahren
- EU: zentrales und de-zentrales Verfahren, Verfahren der gegenseitigen Anerkennung, Referral
- USA: IND, NDA, BLA, ANDA, Expedited Program
- Japan: NDA, GAIYO

- Rest der Welt: China, Kanada, Australien, Süd-Afrika

Produktlebenszyklus

- Aufrechterhalten einer Zulassung: Variations, Renewal, line extension
- Beendigung einer Zulassung
- Pharmakovigilanz /Arzneimittelsicherheit
- Pre- und Postmarketing
- Referral
- Entlassung aus der Verschreibungspflicht

Besonderheiten bei der Zulassung

- Kinderarzneimittel
- Orphan drugs
- Kombipräparate
- Biosimilars & Generika: Unterlagenschutz, Vergleichbarkeit

Zulassungsdokumentation

- CTD
- eCTD
- NMV, RPS

Rechtsgrundlagen

- Arzneimittelrecht
- AMG
- HWG
- EU-Richtlinien & EU-Verordnungen
- AMNOG
- Patentrecht
- Patentierbarkeitsvoraussetzung
- Definition: Erfindung, Urheberrecht, Patent
- SPC
- Patenterteilungsverfahren
- Geltungsbereich
- Ethik-Recht

	- Gentechnikrecht
	- GenTG
	- Anwendung in der Praxis
	- Intra- & Supranationale Richtlinien
	- Ethische Aspekte
Literatur	- Gesetz zur Regelung der Gentechnik (Gentechnikgesetz -
	GenTG)
	- Ausfertigungsdatum: 20.06.1990
	- Neugefasst durch Bek. v. 16.12.1993 I 2066;
	- Zuletzt geändert durch Art. 3 G v. 17.7.2017 I 2421
	- Verordnung (EG) Nr. 1829/2003 über genetisch veränderte
	Lebensmittel und Futtermittel Richtlinie 2001/83/EG
	- EU-Verordnung1829/2003 (EU-VO L+F) des Europäischen
	Parlaments und des Rates über genetisch veränderte Lebens-
	und Futtermittel vom 22. September 2003
	- EU-Verordnung Nr. 1830/2003 (EU-VO R+K) des
	Europäischen Parlaments und des Rates über die
	Rückverfolgbarkeit und Kennzeichnung genetisch veränderter
	Organismen und über die Rückverfolgbarkeit von aus genetisch
	veränderten Organismen hergestellten Lebensmitteln und
	Futtermitteln sowie zur Änderung der Richtlinie 2001/18/EG
	- Verordnung (EG) 1946/2003 des Europäischen Parlaments und
	des Rates vom 15. Juli 2003 über grenzüberschreitende
	Verbringungen genetisch veränderter Organismen
	- Verordnung über die Sicherheitsstufen und
	Sicherheitsmaßnahmen bei gentechnischen Arbeiten in
	gentechnischen Anlagen (Gentechnik-Sicherheitsverordnung -
	GenTSV)
	- Gentechnik-Sicherheitsverordnung vom 12. August 2019
	(BGBl. I S. 1235) ersetzt V 2121-60-1-4 v. 24.10.1990 I 2340
	(GenTSV)
	- Gesetz zur Verhütung und Bekämpfung von
	Infektionskrankheiten beim Menschen (Infektionsschutzgesetz
	- IfSG)

- Infektionsschutzgesetz vom 20. Juli 2000 (BGBl. I S. 1045), das zuletzt durch Artikel 2 des Gesetzes vom 10. Dezember 2021 (BGBl. I S. 5162) geändert worden ist
- Verordnung über Sicherheit und Gesundheitsschutz bei Tätigkeiten mit Biologischen Arbeitsstoffen (Biostoffverordnung - BioStoffV)
- Ausfertigungsdatum: 15.07.2013
- Stand: Zuletzt geändert durch Art. 146 G v. 29.3.2017 I 626
- Gesetz über die Durchführung von Maßnahmen des Arbeitsschutzes zur Verbesserung der Sicherheit und des Gesundheitsschutzes der Beschäftigten bei der Arbeit (Arbeitsschutzgesetz ArbSchG)
- Arbeitsschutzgesetz vom 7. August 1996 (BGBl. I S. 1246), das zuletzt durch Artikel 12 des Gesetzes vom 22. November 2021 (BGBl. I S. 4906) geändert worden ist
- Verordnung zum Schutz vor Gefahrstoffen (Gefahrstoffverordnung GefStoffV)
- Gefahrstoffverordnung vom 26. November 2010 (BGBl. I S. 1643, 1644), die zuletzt durch Artikel 2 der Verordnung vom 21. Juli 2021 (BGBl. I S. 3115) geändert worden ist
- DGUV-Vorschriften In Deutschland erlassen nach § 15 SGB VII die Berufsgenossenschaften als Träger der gesetzlichen Unfallversicherung die Vorschriften der gesetzlichen Unfallversicherung (DGUV-Vorschriften).
- Publications of the International Service for the Acquisition of Agri-biotech Applications (ISAAA). ISAAA is a not-for-profit international organization that shares the benefits of crop biotechnology to various stakeholders.
- Internationales Protokoll über die biologische Sicherheit (nach dem letzten Verhandlungsort Cartagena (Kolumbien)
 Cartagena-Protokoll genannt), ein internationales
 Folgeabkommen der Konvention über biologische Vielfalt. In Kraft getreten am 11. 09. 2003

Modulnummer	3.4
Modultitel	Therapeutische Proteine, Peptide & Small Drug Molecules
Modulkürzel	TPP
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Universität Ulm
Modulverantwortlichkeit	Dr. Frank Rosenau
Lehrende	Dr. Frank Rosenau
Voraussetzungen	
Verwertbarkeit	Das Modul im Masterstudiengang Biopharmazeutisch-
	Medizintechnische Wissenschaften, aber auch für andere
	naturwissenschaftliche Studiengänge, vor allem im Bereich der
	Biopharmazie und Biotechnologie anwendbar.
Semester (empfohlen)	3
Max. Teilnehmerzahl	25
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	2
Veranstaltungssprache	⊠Deutsch, □Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	□Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	⊠Einzel-/Gruppenpräsentation, □Portfolio, ⊠Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	Eine mündliche Präsentation (20 – 30 Min) mit Diskussion fließt zu
	100% in die Notengebung ein.
Lernziele	Fachkompetenz

In diesem Modul sollen die Studierenden unterschiedliche Gruppen von therapeutischen Proteinen und Peptiden kennenlernen.

Die Studierenden können zusätzlich die in diesem Bereich angewandten Methoden nennen und erklären.

Die Studierenden lernen unter Anderem unterschiedliche chemische Modifikationsmethoden von therapeutischen Proteinen, Peptiden und Small Drug Molecules kennen.

In Verbindung mit Verabreichungsarten von therapeutischen Proteinen, Peptiden und Small Drug Molecules werden sogenannte drug-delivery-Systeme diskutiert, die die Studierenden nach Beendigung des Moduls benennen und erläutern können.

Das eigenständige Durchführen und Planen von Versuchen mit therapeutischen Proteinen, Peptiden und Small Drug Molecules soll nach erfolgreich abgeschlossenem Modul möglich sein.

Methodenkompetenz

In einer praktischen Übung sollen die Studierenden das Wissen über therapeutische Proteine, Peptiden und Small Drug Molecules vertiefen.

Zusätzlich werden die neu erlernten Methoden zur Generierung von therapeutischen Peptiden praktisch angewandt und eventuell mögliche Transportsysteme entwickelt.

Selbst- und Sozialkompetenz

Die Studierenden sollen nach Abschluss des Moduls die Fähigkeit besitzen, therapeutische Proteine, Peptide und Small Drug Molecules in unterschiedliche Gruppen einzuteilen.

Zusätzlich sollen die Studierenden nach Bestehen des Moduls sowohl unterschiedliche Methoden zur Generierung von

	therapeutischen Proteinen, Peptiden und Small Drug Molecules als auch verschiedene Transportsysteme kennen und diese anwenden können.
Lehrinhalte	Therapeutische Peptide
	- Was sind therapeutische Peptide?
	- Wie werden diese Unterteilt?
	- Antimikrobielle Peptide
	- Zellpenetrierende Peptide
	- Tumorpenetrierende Peptide
	- Antikörper als therapeutische Proteine
	Methoden
	- Phagen-Display
	- mRNA-Display
	- Ribosomen-Display
	- Bakterien-Display
	- Festphasenpeptidsynthese
	- Zell-(Selex)
	Klick-Chemie/Modifizierung von Proteinen
	- PEGylierung
	- PASylierung
	- NHS-Ester
	- Sulfo NHS-Ester
	- Meleimide
	Drug-delivery-Systeme
	- Hydrogele
	- DNA-Hydrogele
	- Aminosäurebasierende Hydrogele
	- Proteinbasierende Hydrogele
	- Nanodiscs
Literatur	- Aktuelle Fachliteratur

Modulkürzel Stz	Modulnummer	3.5
Studiengang Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)	Modultitel	Stammzellen und Regenerative Medizin
Ort der Veranstaltung	Modulkürzel	
Modulverantwortlichkeit	Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Prof. Dr. Uwe Knippschild, PD Dr. Joachim Bischof, PD Dr. Pengfei Xu, PD Dr. Markus Hönicka, PD Dr. Timo Burster, Prof. Dr. Cagatay Gunes Voraussetzungen		
Pengfei Xu, PD Dr. Markus Hönicka, PD Dr. Timo Burster, Prof. Dr. Cagatay Gunes Voraussetzungen Fundierte Kenntnisse in Molekularbiologie, Zellbiologie und Signaltransduktion Verwertbarkeit Verknüpfungen bestehen insbesondere zu den Modulen 1.2 Pharmazeutische Grundlagen und Immunologie, 1.3 Medizinische Grundlagen, 3.2a Neue Methoden in der Molekularbiologie, 3.2b Zelllinienentwicklung, 3.4 Therapeutische Proteine, Peptide und Small Drug Molecules. Die Stammzellforschung und Regenerative Medizin gewinnt mehr und mehr an Bedeutung. Daher sind Kenntnisse in der Grundlagen-orientierten Stammzellforschung, über ethisch unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden.		
Voraussetzungen Fundierte Kenntnisse in Molekularbiologie, Zellbiologie und Signaltransduktion Verwertbarkeit Verknüpfungen bestehen insbesondere zu den Modulen 1.2 Pharmazeutische Grundlagen und Immunologie, 1.3 Medizinische Grundlagen, 3.2a Neue Methoden in der Molekularbiologie, 3.2b Zelllinienentwicklung, 3.4 Therapeutische Proteine, Peptide und Small Drug Molecules. Die Stammzellforschung und Regenerative Medizin gewinnt mehr und mehr an Bedeutung. Daher sind Kenntnisse in der Grundlagen-orientierten Stammzellforschung, über ethisch unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester	Lehrende	**
Voraussetzungen Fundierte Kenntnisse in Molekularbiologie, Zellbiologie und Signaltransduktion Verwertbarkeit Verknüpfungen bestehen insbesondere zu den Modulen 1.2 Pharmazeutische Grundlagen und Immunologie, 1.3 Medizinische Grundlagen, 3.2a Neue Methoden in der Molekularbiologie, 3.2b Zelllinienentwicklung, 3.4 Therapeutische Proteine, Peptide und Small Drug Molecules. Die Stammzellforschung und Regenerative Medizin gewinnt mehr und mehr an Bedeutung. Daher sind Kenntnisse in der Grundlagen-orientierten Stammzellforschung, über ethisch unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		Pengfei Xu, PD Dr. Markus Hönicka, PD Dr. Timo Burster, Prof.
Signaltransduktion Verwertbarkeit Verknüpfungen bestehen insbesondere zu den Modulen 1.2 Pharmazeutische Grundlagen und Immunologie, 1.3 Medizinische Grundlagen, 3.2a Neue Methoden in der Molekularbiologie, 3.2b Zelllinienentwicklung, 3.4 Therapeutische Proteine, Peptide und Small Drug Molecules. Die Stammzellforschung und Regenerative Medizin gewinnt mehr und mehr an Bedeutung. Daher sind Kenntnisse in der Grundlagen-orientierten Stammzellforschung, über ethisch unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		Dr. Cagatay Gunes
Pharmazeutische Grundlagen und Immunologie, 1.3 Medizinische Grundlagen, 3.2a Neue Methoden in der Molekularbiologie, 3.2b Zelllinienentwicklung, 3.4 Therapeutische Proteine, Peptide und Small Drug Molecules. Die Stammzellforschung und Regenerative Medizin gewinnt mehr und mehr an Bedeutung. Daher sind Kenntnisse in der Grundlagen-orientierten Stammzellforschung, über ethisch unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester	Voraussetzungen	
Grundlagen, 3.2a Neue Methoden in der Molekularbiologie, 3.2b Zelllinienentwicklung, 3.4 Therapeutische Proteine, Peptide und Small Drug Molecules. Die Stammzellforschung und Regenerative Medizin gewinnt mehr und mehr an Bedeutung. Daher sind Kenntnisse in der Grundlagen-orientierten Stammzellforschung, über ethisch unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester	Verwertbarkeit	Verknüpfungen bestehen insbesondere zu den Modulen 1.2
Zelllinienentwicklung, 3.4 Therapeutische Proteine, Peptide und Small Drug Molecules. Die Stammzellforschung und Regenerative Medizin gewinnt mehr und mehr an Bedeutung. Daher sind Kenntnisse in der Grundlagen-orientierten Stammzellforschung, über ethisch unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		Pharmazeutische Grundlagen und Immunologie, 1.3 Medizinische
Small Drug Molecules. Die Stammzellforschung und Regenerative Medizin gewinnt mehr und mehr an Bedeutung. Daher sind Kenntnisse in der Grundlagen-orientierten Stammzellforschung, über ethisch unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen)		Grundlagen, 3.2a Neue Methoden in der Molekularbiologie, 3.2b
Die Stammzellforschung und Regenerative Medizin gewinnt mehr und mehr an Bedeutung. Daher sind Kenntnisse in der Grundlagen-orientierten Stammzellforschung, über ethisch unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		Zelllinienentwicklung, 3.4 Therapeutische Proteine, Peptide und
und mehr an Bedeutung. Daher sind Kenntnisse in der Grundlagen-orientierten Stammzellforschung, über ethisch unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		Small Drug Molecules.
und mehr an Bedeutung. Daher sind Kenntnisse in der Grundlagen-orientierten Stammzellforschung, über ethisch unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		Die Stammzellforschung und Regenerative Medizin gewinnt mehr
unbedenkliche Verfahren zur Gewinnung von Stammzellen, über das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		und mehr an Bedeutung. Daher sind Kenntnisse in der
das Potenzial der pharmakologischen Beeinflussung von Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		Grundlagen-orientierten Stammzellforschung, über ethisch
Stammzellen durch "Small Molecule" Inhibitoren für die Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		unbedenkliche Verfahren zur Gewinnung von Stammzellen, über
Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		das Potenzial der pharmakologischen Beeinflussung von
Induktion von Differenzierungsprozessen und der Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		Stammzellen durch "Small Molecule" Inhibitoren für die
Wachstumsinhibition von Tumorstammzellen, sowie Kenntnisse über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		
über rechtliche Grundlagen in der Stammzellforschung essentiell. Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		
Das in diesem Modul vermittelte theoretische und praktische Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		
Wissen kann in allen Master-Studiengängen mit naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		
naturwissenschaftlicher/ medizinischer Ausrichtung, wie u.a. Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		•
Biologie, Molekulare Medizin, Medizin, Pharmazie, Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		
Medizinalchemie, chemische Biologie und Biotechnologie, eingesetzt werden. Semester (empfohlen) Wintersemester		S.
eingesetzt werden. Semester (empfohlen) Wintersemester		
Semester (empfohlen) Wintersemester		
	Semester (empfohlen)	
1/10/1/ 1 VIIII VI	Max. Teilnehmerzahl	10

Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	⊠Seminar (online via Big Blue Button)
Präsenztage	5
Veranstaltungssprache	⊠Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	□Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, ⊠Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit ⊠Haus-/ Seminararbeit,
	⊠Einzel-/Gruppenpräsentation, □Portfolio, ⊠Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	Die Abschlussnote ergibt sich aus der Bewertung der schriftlichen
	Seminararbeit und dem zugehörigen Vortrag (50%) sowie dem
	Laborprotokoll (50%).
	Seminar: Die Notenvergabe erfolgt aufgrund der Bewertung der
	schriftlichen Seminararbeit (66,6%) und des Vortrags (33,3%).
	Seminararbeit in Englisch (mit 15 min. Präsentation in Englisch oder Deutsch, sowie 5 min Fragen in Deutsch oder Englisch)
	oder Bedisen, sowie 3 mm Fragen in Bedisen oder Englisen)
	Praktikum: Die Notenvergabe erfolgt aufgrund der Bewertung des
	Praktikumsprotokolls. Praktikumsprotokoll (in Englisch oder
	Deutsch)
T 1	
Lernziele	Fachkompetenz
	Studierende kennen und verstehen die gesetzlichen Regelungen zur
	Stammzellforschung.
	Studierende verstehen die Physiologie von Stammzellen.
	Studierende verstehen Signalnetzwerke und können
	Zellzyklusregulation in Stammzellen analysieren.

Studierende verstehen Stammzelltherapiekonzepte und können diese anwenden.

Methodenkompetenz

Studierende können folgende Techniken anwenden und beurteilen:

Tierexperimentelle Arbeiten

Isolierung und Charakterisierung hämatopoetischer Stammzellen aus der Maus mit Hilfe chromatographischer Techniken

Proteinchemische Techniken

(SDS-PAGE, Western BLot, Kinaseassays, Enzymkinetik, IC50 Bestimmungen von Kinaseinhibitoren, Aufreinigung von GST-Fusionsproteinen

Zellbiologische Techniken

Zellviabilitätsbestimmungen (MTT Assays), Differenzierung von Stammzellen, Iummunfluoreszenzanalysen

Molekularbiologische Techniken RNA Isolierung, cDNA Synthese, PCR, qRT-PCR

Immunhistologische Techniken

HE-Färbungen

IHC-Färbungen

Selbst- und Sozialkompetenz

Studierende kennen die üblichen Verfahren und Grundsätze wissenschaftlichen Arbeitens in der Stammzellforschung und können diese anwenden.

Studierende können selbstständig wissenschaftliche Arbeiten auf dem Gebiet der Stammzellforschung verfassen.

Studierende können komplexe Aufgaben in Teams gemeinsam lösen und strukturiert bearbeiten.

Lehrinhalte	Vorlesung (1 SWS):
Leni iiiiaite	- Eigenschaften von Stammzellen
	- Stammzellnischen und Stammzellkultur
	- Leberstammzellen und Tumorstammzellen
	- Molekulare Mechanismen der Stammzellalterung
	- Signaltransduktion und Stammzellen
	- "Small molecule" Inhibitoren (HDAC- und Kinaseinhibitoren)
	- Stammzelltherapie
	Seminar (1 SWS):
	- Erstellen einer schriftlichen Seminararbeit in Englisch über ein
	Stammzell-relevantes Thema (Auswahl der vorgegebenen
	Themen möglich)
	- PowerPoint Präsentation der Seminararbeit (in Englisch oder
	Deutsch)
	Praktikum (ganztägig 1 Woche, 2 SWS)
	- Praktikumsbezogenes Kurzreferat
	- Isolierung und Charakterisierung von hämatopoetischen
	Stammzellen
	- Analyse von Signaltransduktionswegen
	- Bestimmung der Expression und Aktivität verschiedener
	Kinasen
	- Charakterisierung von potentiellen Kinaseinhibitoren (IC ₅₀
	Bestimmungen)
	- Nachweis der Expression von Tumorsuppressoren und
	Stammzellmarkern (Western-Blot-Analysen,
	Immunfluoreszenzanalysen, Immunhistochemie, quantitative
	Realtime PCR)
	- Aufreinigung von rekombinanten Proteinen
Literatur	- Relaix F, Bencze M, Borok MJ, Der Vartanian A, Gattazzo F,
	Mademtzoglou D, Perez-Diaz S, Prola A, Reyes-Fernandez PC,
	Rotini A, Taglietti 5th. Perspectives on skeletal muscle stem
	, o

- *cells*. Nat Commun. 2021 Jan 29;12(1):692. doi: 10.1038/s41467-020-20760-6.
- Brunet A, Goodell MA, Rando TA. *Ageing and rejuvenation of tissue stem cells and their niches*. Nat Rev Mol Cell Biol. 2023 Jan;24(1):45-62. doi: 10.1038/s41580-022-00510-w.
- Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Induced Pluripotent Stem Cells (iPSCs)-Roles in Regenerative Therapies, Disease Modelling and Drug Screening. Cells. 2021 Sep 5;10(9):2319. doi: 10.3390/cells10092319
- Karami Z, Moradi S, Eidi A, Soleimani M, Jafarian A. Induced pluripotent stem cells: Generation methods and a new perspective in COVID-19 research. Front Cell Dev Biol. 2023 Jan 17;10:1050856. doi: 10.3389/fcell.2022.1050856.
- Lupatov AY, Yarygin KN. Telomeres and Telomerase in the Control of Stem Cells. Biomedicines. 2022 Sep 20;10(10):2335. doi: 10.3390/biomedicines10102335
- Mayani H, Chávez-González A, Vázquez-Santillan K, Contreras J, Guzman ML. Cancer Stem Cells: Biology and Therapeutic Implications. Arch Med Res. 2022 Dec;53(8):770-784. doi: 10.1016/j.arcmed.2022.11.012.
- Mousaei Ghasroldasht M, Seok J, Park HS, Liakath Ali FB, Al-Hendy A. Stem Cell Therapy: From Idea to Clinical Practice.
 Int J Mol Sci. 2022 Mar 5;23(5):2850. doi: 10.3390/ijms23052850.
- Yamagishi H, Shigematsu K. Perspectives on Stem Cell-Based Regenerative Medicine with a Particular Emphasis on Mesenchymal Stem Cell Therapy. JMA J. 2022 Jan 17;5(1):36-43. doi: 10.31662/jmaj.2021-0080.
- Hu W, Lazar MA. Modelling metabolic diseases and drug response using stem cells and organoids. Nat Rev Endocrinol. 2022 Dec;18(12):744-759. doi: 10.1038/s41574-022-00733-z.

Modulnummer	3.6
Modultitel	Summer School
Modulkürzel	SuSc
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Athen (Organisation: Universität Ulm, Hochschule Biberach,
36.1.1	National and Kapodistrian University of Athens)
Modulverantwortlichkeit Laborate	Prof. Dr. Uwe Knippschild
Lehrende	Prof. Dr. Uwe Knippschild, Prof. Dr. Constaninos Vorgias, Prof.
	Dr. Chrystelle Mavoungou-Pfäffle, Prof. Dr. Emanuel Mikros, PD
*7	Dr. Pengfei Xu, u. a.
Voraussetzungen	Kenntnisse in den Bereichen Biochemie, Molekularbiologie
Verwertbarkeit	Die Strukturbiologie ist inzwischen ein sehr wichtiges und
	vielfältiges Forschungsgebiet, das modernste Techniken nutzt, um
	Informationen über Struktur und Dynamik medizinisch relevanter
	Moleküle, vornehmlich von Proteinen, zu erhalten, die
	Rückschlüsse auf deren Funktion zulassen, aber auch zur
	Entwicklung von Arzneimitteln genutzt werden können.
	Ziel der internationalen Sommerschule ist es, den Studierenden
	das komplexe Forschungsfeld der (Protein-)Strukturbiologie in
	Theorie und Praxis näher zu bringen.
Semester (empfohlen)	Sommersemester
Max. Teilnehmerzahl	35
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung(en) im Labor mit E-Learning-Elementen
	☐ Präsenzveranstaltung(en) im Labor
Präsenztage	7
Veranstaltungssprache	□Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	3 Credits
Prüfungsform und –umfang	□Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, ⊠Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,

	□Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	<u>Umfang der Prüfung:</u> mündl. Vortrag + schriftliche Zusammenfassung (nur der Vortrag wird benotet)
Lernziele	Fachkompetenz
	Studierende, die dieses Modul erfolgreich absolviert haben - haben vertiefte Kenntnisse über Methoden zur Proteinproduktion
	- verstehen die Beziehungen zwischen Proteinstruktur und Funktion
	- besitzen Kenntnisse über thermodynamische Aspekte von Proteinen
	Methodenkompetenz Studierende
	- erhalten Einblicke in das Potential von Modeling Modellen
	- beherrschen in silico Methoden zur Darstellung von Protein-
	Inhibitor und Protein-Ligand Interaktionen
	- kennen Methoden zur Kristallisation von Proteinen
	- haben die Bestimmung von Proteinstrukturen mit Hilfe von Röntgenstrukturanalysen erlernt
Lehrinhalte	- In diesem Modul werden folgende fachliche Inhalte vermittelt:
Lem militie	- Vorlesung (von Dozierenden der Universität Athen und der Universität Ulm):
	 Produktion rekombinanter Proteine
	o Proteinstruktur
	o Proteinfunktion
	o Proteinstabilität
	o Proteindesign Thermodynamik und Interaktionen von Proteinen von
	 Thermodynamik und Interaktionen von Proteinen von medizinischem und biotechnologischem Interesse

	 Seminar und Übung: Referate der Kursteilnehmer*innen und praktische Erfahrung, zusätzlich zu den Vorträgen der Dozierenden werden weitere aktuelle Themen über Proteinstruktur und Funktionen, Wechselwirkungen zwischen Enzymen und Inhibitoren sowie über proteinchemische Methoden von den Kursteilnehmer*innen in Form eines Vortrags präsentiert und eine schriftliche Zusammenfassung des jeweiligen Themas erstellt. Der Vortrag wird benotet. Praktische Erfahrungen: Einführung in die Programme Pymool, MAESTRO und COOT
Literatur	 García-Ortegón M, Simm GNC, Tripp AJ, Hernández-Lobato JM, Bender A, Bacallado S. DOCKSTRING: Easy Molecular Docking Yields Better Benchmarks for Ligand Design. J Chem Inf Model. 2022 Aug 8;62(15):3486-3502. doi: 10.1021/acs.jcim.1c01334. Tavares FM, Gomes AC, Assunção EM, de Medeiros JLS, Scotti MT, Scotti L, Ishiki HM. Virtual Screening and Molecular Docking: Discovering Novel c-KIT Inhibitors. Curr Med Chem. 2022;29(2):166-188. doi: 10.2174/0929867328666210915102920. PMID: 34525909. Bonilla SL, Kieft JS. The promise of cryo-EM to explore RNA structural dynamics. J Mol Biol. 2022 Sep 30;434(18):167802. doi: 10.1016/j.jmb.2022 Urner LH. Advances in membrane mimetics and mass spectrometry for understanding membrane structure and function. Curr Opin Chem Biol. 2022 Aug; 69:102157. doi: 10.1016/j.cbpa.2022.102157. Zhang C, Yang M. Newly Emerged Antiviral Strategies for SARS-CoV-2: From Deciphering Viral Protein Structural Function to the Development of Vaccines, Antibodies, and
	 Small Molecules. Int J Mol Sci. 2022 May 29;23(11):6083. doi: 10.3390/ijms23116083 Remans K, Lebendiker M, Abreu C, Maffei M, Sellathurai S, May MM, Vaněk O, de Marco A. Protein purification strategies

- must consider downstream applications and individual biological characteristics. Microb Cell Fact. 2022 Apr 7;21(1):52. doi: 10.1186/s12934-022-01778-5
- Trivedi R, Nagarajaram HA. Intrinsically Disordered Proteins: An Overview. Int J Mol Sci. 2022 Nov 14;23(22):14050. doi: 10.3390/ijms232214050
- Verkhivker G. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering. Int J Mol Sci. 2022 Mar 8;23(6):2928. doi: 10.3390/ijms23062928
- Yang C, Chen EA, Zhang Y. Protein-Ligand Docking in the Machine-Learning Era. Molecules. 2022 Jul 18;27(14):4568. doi: 10.3390/molecules27144568
- Kokot T, Köhn M. Emerging insights into serine/threonine-specific phosphoprotein phosphatase function and selectivity. J Cell Sci. 2022 Oct 1;135(19):jcs259618. doi: 10.1242/jcs.259618
- Bhatia S, Udgaonkar JB. Heterogeneity in Protein Folding and Unfolding Reactions. Chem Rev. 2022 May 11;122(9):8911-8935. doi: 10.1021/acs.chemrev.1c00704.
- Koehler Leman J, Künze G. Recent Advances in NMR Protein Structure Prediction with ROSETTA. Int J Mol Sci. 2023 Apr 25;24(9):7835. doi: 10.3390/ijms24097835
- Delhommel F, Martínez-Lumbreras S, Sattler M. Combining NMR, SAXS and SANS to characterize the structure and dynamics of protein complexes. Methods Enzymol. 2023; 678:263-297. doi: 10.1016/bs.mie.2022.09.020
- ing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability.
 Chem Rev. 2022 Sep 28;122(18):14085-14179. doi: 10.1021/acs.chemrev.1c00757
- Arter C, Trask L, Ward S, Yeoh S, Bayliss R. Structural features of the protein kinase domain and targeted binding by small-

molecule inhibitors. J Biol Chem	2022	Aug;298(8):102247.
doi: 10.1016/j.jbc.2022.102247		

- Vinciauskaite V, Masson GR. Fundamentals of HDX-MS. Essays Biochem. 2023 Mar 29;67(2):301-314. doi: 10.1042/EBC20220111
- Cabral A, Cabral JE, McNulty R. Cryo-EM for Small Molecules. Curr Protoc. 2022 Dec;2(12):e632. doi: 10.1002/cpz1.632

Modulnummer	4.1
Modultitel	Medizinische Messtechnik
Modulkürzel	MM
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Hochschule Biberach
Modulverantwortlichkeit	Prof. Dr. Heike Frühwirth
Lehrende	Prof. Dr. Karl Ziemons
Voraussetzungen	
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang
	Biopharmazeutisch-Medizintechnische Wissenschaften anrechenbar.
	Das Modul vermittelt Grundwissen der Messtechnik im Bereich der
	Biopharma- und Medizintechnik.
Semester (empfohlen)	2 (3)
Max. Teilnehmerzahl	25
Art der Veranstaltung	□Präsenzveranstaltung(en)
	⊠Präsenzveranstaltung(en) mit E-Learning-Elementen
	□Präsenzveranstaltung (en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	1
Veranstaltungssprache	⊠Deutsch, □Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	60 Min Klausur
	OU IVIIII KIAUSUF
Lernziele	Fachkompetenz
	Die Studierenden besitzen grundlegende Kenntnisse sowie das
	Verständnis über elektrische und bioelektrische Signale.

Im Vordergrund stehen hierbei deren Entstehung, die dabei wirkenden biologischen und elektrischen Phänomene, über die analoge und digitale Erfassung und Verstärkung bis hin zur Analyse und Darstellung der gewonnen messtechnischen Informationen.
Methodenkompetenz Die Studierenden besitzen ein Verständnis zur Entstehung, Erfassung und Weiterverarbeitung von Signalen physikalischer und biologischer Systeme und können dieses Wissen anwenden.
Die Studierenden können Messfehler analysieren und quantifizieren und erlangen dadurch ein Verständnis zur Messwerterfassung physikalischer und biologischer Signale.
Selbst- und Sozialkompetenz Die Studierenden sind in der Lage, in der Peergroup über biomedizinische Aufgabenstellungen zu sprechen und sie zu lösen.
Sie haben Kenntnis über das Entstehen der Messergebnisse von einschlägigen medizinischen Geräten und Messgeräten.
Sie können biomedizinische und technische Zusammenhänge beschreiben und vermitteln.
 Erläuterung zu SI-Basiseinheiten und abgeleiteten physikalischen Messgrößen Grundlagen der Elektrotechnik mit Blick auf die Messtechnik Messfehleranalyse, -berechnung, Fehlerfortpflanzung Failure-Mode-Error-Analysis – FMEA Messung physikalischer Größen in der Medizin und Biotechnologie
- Messen biologischer Vorgänge durch indirekte elektrische

Signalerzeugung (Transducer, Biosensoren)

Hochschule Biberach. University of Applied Sciences

Lehrinhalte

Literatur	-	Eichmeier, J., Medizinische Elektronik, Springer-Verlag
	-	Kramme, R., Medizintechnik - Verfahren - Systeme -
		Informationsverarbeitung

4.2
Labordiagnostik
LD
Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Hochschule Biberach
Prof. Dr. Chrystelle Mavoungou-Pfäffle
Stella Gänger
Die Inhalte des Moduls sind für den Masterstudiengang
Biopharmazeutisch-Medizintechnische Wissenschaften
verwendbar. Das Modul "Labordiagnostik" vermittelt in einer
Kombination aus Präsenzveranstaltungen und E-Learning-
Elementen einen Überblick über die vielfältigen Arbeitsbereiche
des Fachs bzw. frischt diese auf.
2. / 3. Semester
16
□Präsenzveranstaltung(en)
□Präsenzveranstaltung(en) mit E-Learning-Elementen
☑ Präsenzveranstaltung(en) im Labor mit E-Learning-Elementen
□reine E-Learning-Veranstaltung(en)
1
☑Deutsch, □Englisch, □Weitere, nämlich:
6 Credits
⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
□Einzel-/Gruppenpräsentation, □Portfolio, ⊠Protokoll,
□Projektarbeit, □Lerntagebuch/ Lernjournale
Umfang der Prüfung:
60 Min Klausur
Protokoll

т		•	-	
L	ern	Z1	el	le

Fachkompetenz

Nach Abschluss des Moduls sind die Studierenden mit dem Ablauf und den Problematiken des Analyseprozesses (Präanalytik, Analytik und Postanalytik) vertraut und verfügen über grundlegende Kenntnisse des Qualitäts- und Risikomanagements in der Labordiagnostik.

Die Studierenden kennen die apparativen Voraussetzungen und sind mit Aufbau und Funktionsweise auch von Laborvollautomaten mit hohem Probendurchsatz in Routine-Großlabors vertraut.

Die Studierenden kennen die Grundlagen der Datenverarbeitung in Routine-Großlabors.

Die Studierenden besitzen ein systematisches Verständnis der Aufgabengebiete des Fachs Labordiagnostik und kennen die fachspezifischen Grundlagen der Analyseprozesse zum Nachweis der wichtigsten Messgrößen.

Methodenkompetenz

Die Studierenden sind in der Lage, sich schnell in neue Untersuchungsverfahren und Analysemethoden sowie in die entsprechende neue Gerätetechnik einzuarbeiten.

Die Studierenden sind in der Lage, den Stellenwert der verschiedenen Labor- und Analysetechniken/der verschiedenen Analyseverfahren, den Zeitbedarf und die Kosten von Labortests einzuschätzen und verfügen über Grundkenntnisse der entsprechenden Abrechnungsmodalitäten.

Selbst- und Sozialkompetenz

Die Studierenden sind in der Lage durch ihre Kommunikations- und Schnittstellenkompetenz die Inhalte aus Labordiagnostik mit Lerninhalten anderer Module zu verknüpfen.

Sie lernen ihr analytisches Denken anzuwenden und auf verschiedene Probleme zu übertragen.

Lehrinhalte	Grundlagen
	- Der analytische Prozess (Präanalytik, Analytik, Postanalytik)
	- Qualitäts- und Risikomanagement
	- Untersuchungsmaterialien
	- Untersuchungsverfahren
	- Gerätetechnik
	Labordiagnostik in den Bereichen
	- Aminosäuren, Proteine und Enzyme
	- Kohlenhydrate
	- Lipide/Lipoproteine
	- Nukleinsäuren/Molekularbiologische Diagnostik
	- Elektrolyt-, Wasser- und Säuren-Basen-Haushalt
	- Hämatologie
	- Hämostaseologie
	- Gastrointestinalsystem
	- Niere/Ableitende Harnwege
	- Binde- und Stützgewebe
	- Nervensystem/Liquoruntersuchungen
	- Hormonsystem
	- Immunsystem
	- Entzündung
	- Maligne Erkrankungen
	- Schwangerschaft
	- Toxikologie, Vergiftungen, Drogenscreening
	- (Mikrobiologische Diagnostik)
Literatur	- Böhm, B.O. (2018): Klinikleitfaden Labordiagnostik: Mit
	Zugang zur Medizinwelt. Urban & Fischer, München
	- Bruhn, H.D. et al. (2008): Labormedizin: Indikationen,
	Methodik und Laborwerte Pathophysiologie und Klinik.
	Schattauer, Stuttgart
	- Graf, N. (2013): BASICS Klinische Chemie: Laborwerte in der
	klinischen Praxis. Urban & Fischer, München

- Gressner, A.M. und Arndt, T. (2007): Lexikon der Medizinischen Laboratoriumsdiagnostik; Springer, Berlin
 - Hallbach, J. (2011): Klinische Chemie und Hämatologie: Biomedizinische Analytik für MTLA und Studium. Thieme, Stuttgart
- Kohse, K.P. (2006): Taschenlehrbuch Klinische Chemie und Hämatologie. Thieme, Stuttgart
- Renz, H. (2014): Praktische Labordiagnostik: Lehrbuch zur Laboratoriumsmedizin, klinischen Chemie und Hämatologie. De Gruyter, Berlin
- Neumeister, B., Böhm, O.B. (1998): Klinikleitfaden Labordiagnostik. Urban & Fischer, München

Modulnummer	4.3
Modultitel	Bioanalytical Methods
Modulkürzel	BM
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Universität Ulm
Modulverantwortlichkeit	Prof. Dr. Boris Mizaikoff
Lehrende	Prof. Dr. Boris Mizaikoff
Voraussetzungen	
Verwertbarkeit	Das Modul ist im Masterstudiengang Biopharmazeutisch-
	Medizintechnische Wissenschaften, aber auch für andere
	naturwissenschaftliche Studiengänge, vor allem im Bereich der
	Biophysik, Biochemie, Biopharmazie und Biotechnologie anwendbar.
Semester (empfohlen)	2
Max. Teilnehmerzahl	25
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	□Präsenzveranstaltung(en) im Labor mit E-Learning-Elementen
	⊠reine E-Learning-Veranstaltung(en)
Präsenztage	0
Veranstaltungssprache	□Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	□Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	⊠Essay, □Forumsbeitrag, ⊠Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	Die Teilnahme an den Übungen ist Voraussetzung für die
	schriftliche Ausarbeitung (Essay).
	Prüfungssprache wird mit Studierenden gemeinsam festgelegt.
	Trainingsspractic with thit studiorenden geniemsam resigning.
Lernziele	Fachkompetenz

	Die Studierenden können bioanalytische Methoden und Verfahren (inkl. Chemo-/Biosensoren) grundlegend erklären.		
	Die Studierenden können verschiedene Anwendungsgebiete identifizieren.		
	Die Studierenden können analytische Ergebnisse bewerten.		
	Die Studierenden können Methoden zur Strukturaufklärung, bildgebende Verfahren, sowie weitere fortschrittliche Methoden erklären.		
	Die Studierenden erkennen den fachlichen Zusammenhang zwischen bioanalytischen Methoden und verschiedenen Anwendungsgebieten.		
	Methodenkompetenz Die Studierenden verfügen über die Fertigkeit bioanalytische Fragestellungen zu analysieren und lösen zu können.		
	Die Studierenden können selbstständig eine Datenanalyse durchführen.		
	Selbst- und Sozialkompetenz Lernbereitschaft und Belastbarkeit helfen den Studierenden Anwendungsaufgaben zu analysieren und Lösungen zu erörtern.		
Lehrinhalte	Basics:		
	 Grundlagen und Kenngrößen der Analytischen Chemie Probenvorbereitung (Zellaufschluss, Fällung, Zentrifugation, Dialyse, Filtration, Extraktion, Gelfiltration, Präzipitation) Spektroskopische Methoden (Wechselwirkung Licht-Materie, UV-Vis-, Fluoreszenz-, IR-, Raman-, SPR-Spektroskopie, FRET) 		

	 Elektrophoretische Verfahren (Wanderung geladener Teilchen in elektrischem Feld, Gel-, Zonen-, Disk-, Kapillarelektrophorese, SDS-PAGE, nativ, isoelektrische Fokussierung, Elektroblotting, 2D) Chromatographische Trennmethoden (Verteilung zwischen mobiler und stationärer Phase, RP, HIC, HILIC, IEXC, SEC, AC) Massenspektrometrie (Trennung von Ionen, MALDI, ESI, TOF, Quadrupol, Ionenfalle, SEV, Nachweis, Identifizierung)
	 Assays (Prinzip, Enzym-, Immuno-Assays) Chemo- und Biosensoren (Aufbau, elektrochemisch, optisch, radiochemisch) Weitere Methoden (DNA Sequenzierung, PCR)
	 Advanced: Methoden zur Strukturaufklärung (CD-, NMR-Spektroskopie, Röntgenstrukturanalyse, SAXS, Sequenzanalyse, MS) Bildgebende Verfahren (Licht-, Fluoreszenz-, Elektronen-, Raster-sondenmikroskopie, Probenpräparation) Kopplungs- und Hochdurchsatzverfahren: LC-MS, MS-MS, Sensorarrays, etc. Miniaturisierte Chemo- und Biosensoren Lab-on-a-chip Weitere Methoden (Ultrazentrifugation, Mikrokalorimetrie, etc.)
Literatur	 F. Lottspeich, J. W. Engels: Bioanalytik, 3. Auflage, Springer Spektrum, 2012 S. R. Mikkelsen, E. Cortón: Bioanalytical Chemistry, Wiley-Interscience, 2004 M. H. Gey, Instrumentelle Analytik und Bioanalytik, Springer Berlin Heidelberg, Berlin, Heidelberg, 2. Auflage, 2008. Cammann, Instrumentelle Analytische Chemie, Spektrum Akademischer Verlag, Heidelberg, 1. Auflage, 2010.

- M. Hesse, H. Meier and B. Zeeh, Spektroskopische Methoden in der organischen Chemie, Georg Thieme Verlag, Stuttgart, 7th edn., (2005).
 - D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch, Fundamentals of Analytical Chemistry, Cengage Learning, Brooks/Cole, 9th edn., (2014).
- Skoog, F. J. Holler and S. R. Crouch, in Principles of Instrumental Analysis, Cambridge University Press, Cambridge, (2007), vol. 9.

Modulnummer	4.4
Modultitel	Biochemical Sensors / Biochemische Sensoren
Modulkürzel	BioS
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Universität Ulm
Modulverantwortlichkeit	Dott. Alberto Pasquarelli
Lehrende	Dott. Alberto Pasquarelli
Voraussetzungen	Grundlagenkenntnisse in Chemie und Biochemie sind erwünscht
Verwertbarkeit	Das Modul komplettiert die in Modul 4.3 "Bioanalytical Methods"
	und in Modul 3.2a "Methoden der Molekularbiologie:
	Anwendungsbeispiele" zu erwerbenden Kenntnisse mit speziellem
	Blick auf die Sensorik. Es werden Grundlagen, Wirkweisen und
	Anwendungsbereiche von Biosensoren und die Befähigung,
	eigenständig Sensorkonzepte zu entwerfen, vermittelt.
Semester (empfohlen)	Wintersemester (1 o. 2)
Max. Teilnehmerzahl	25
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung(en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	2
Veranstaltungssprache	□Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	⊠Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, □Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit ⊠Haus-/ Seminararbeit,
	⊠Einzel-/Gruppenpräsentation, □Portfolio, □Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	120 min Klausur. Um an der Prüfung teilzunehmen, müssen
	folgende Prüfungsvorleistungen erbracht werden:
	1) Ein vorlesungsbegleitender Vortrag von 15 min
	1) Em vonesungsoegienender voluag von 15 mm

	2) Auswertung der Daten aus den Laborversuchen (Hausaufgabe)
Lernziele	Fachkompetenz Students can describe basic principles, mechanisms of action and applications of biosensors in different scenarios.
	After taking this module, participants are able to explain the chemical and physical fundamentals of biosensing.
	Students asses the clinical and industrial applications, differentiate biosensor market sectors regarding technical and economical properties, e.g. commodities for everyday consumer needs or professional equipment for research.
	Methodenkompetenz Students are further able to analyze biosensors, break-down complex sensors in their elementary components and identify and evaluate every individual function in the information flow, from recognition to transduction and transmission.
	Students are capable of predicting the effects of elementary components in an integrated biosensor application.
	Selbst- und Sozialkompetenz Furthermore, students are able to reflect and critically analyze research in the field of biosensors.
	Finally, students are capable of developing appropriate concepts and designs for given biosensing problems in industry and academia.
	They are further able to independently derive original solutions for new problems.
Lehrinhalte	 Introduction to biosensors Review of the basics of chemistry and molecular biology Biological detection methods: catalytic, immunologic, etc.

 Physical transduction methods: electrochemical, optical, gravimetric, etc. Immobilization techniques: adsorption, entrapment, crosslinking, covalent bonds Biochip technologies: DNA and protein chips, Ion-channel devices, MEA and MTA, Implants Student seminars
Laboratory practice with experimental demonstrations and
quantitative determinations of analytes
 Marks R.S. et al., Handbook of Biosensors and Biochips, Wiley, 2007 Alberts B., Molecular Biology of the Cell 5th ed., Garland Science, 2008 Gizeli E. and Lowe C.R., Biomolecular Sensors, Taylor & Francis, 2002 Renneberg R. et al., Biosensing for the 21st Century, Springer 2007 Orellana G and Cruz Moreno-Bondi M., Frontiers in Chemical Sensors, Springer, 2006 Homola J., Surface Plasmon Resonance Based Sensors, Springer, 2006 Hierlemann A., Integrated Chemical Microsensor Systems in CMOS Technology, Springer, 2006 Steinem C. and Janshoff A., Piezoelectric Sensors, Springer, 2007 Jay J. M. et al., Modern Food Microbiology, Springer, 2008 Morrison D. et al., Defense against Bioterror, Springer, 2007
- Willner I. and Katz E., Bioelectronics, Wiley, 2005

Modulnummer	4.5
Modultitel	Medizintechnik
Modulkürzel	MT
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Hochschule Biberach
Modulverantwortlichkeit	Prof. Dr. Karl Ziemons
Lehrende	Prof. Dr. Karl Ziemons
Voraussetzungen	
Verwertbarkeit	Die Inhalte des Moduls sind für den Masterstudiengang
	Biopharmazeutisch-Medizintechnische Wissenschaften
	anrechenbar. Das Modul vermittelt Grundwissen der
	Medizintechnik und deren Anwendung und steht in Verbindung
	mit dem Modul 4.5.
Semester (empfohlen)	
Max. Teilnehmerzahl	25
Art der Veranstaltung	□Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	⊠Präsenzveranstaltung(en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Präsenztage	2
Veranstaltungssprache	⊠Deutsch, □Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	□Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, ⊠Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, □Wissenschaftspraktische
	Tätigkeit, □Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	⊠Einzel-/Gruppenpräsentation, □Portfolio, ⊠Protokoll,
	□Projektarbeit, □Lerntagebuch/ Lernjournale
	Umfang der Prüfung:
	Praktikumsbericht über max. 10 Seiten + kleine Präsentation,
	welche dann in einem 20 min. Vortrag vorgetragen wird.
	when a dim in emem 20 mm. Voltag Volgetiagen wha.
Lernziele	Fachkompetenz

	Nach Abschluss der Lehrveranstaltung sollen die Studierenden Möglichkeiten und Grenzen der Anwendung medizintechnischer Produkte und Arbeitsmethoden erkennen und verstehen. Sie sollen in der Lage sein, Diagnose- und Therapieformen in der Medizin zu erläutern und im Hinblick auf Stofftransportvorgänge in biologischen Systemen zu analysieren. Weiterhin können Sie die Grundsätze und rechtlichen Rahmenbedingungen für die Entwicklung von Medizinprodukten abschätzen und so eine Orientierung in die mitunter komplizierten Zusammenhänge liefern.
	Methodenkompetenz
	Die Studierenden erkennen interdisziplinäre Herausforderung und reagieren durch Kommunikation mit anderen Disziplinen darauf.
	Selbst- und Sozialkompetenz
	Die Studierenden präsentieren Lösungsansätze und sind in der Lage ihre Lösungen unter Einbeziehung der erlernten Methoden zu reflektieren.
Lehrinhalte	 Grundlegende Anforderungen an medizintechnische Systeme (Risiken und Vorschriften für Medizinprodukte, technische Sicherheit, Materialien) medizintechnische Systeme zur Funktionsdiagnostik (Herz- Kreislaufsysteme, Lungenfunktionsdiagnostik, Audiometrie) bildgebende Systeme (Röntgentechnologie, CT, MRT, Ultraschall, nuklearmedizinische Methoden) Therapiegeräte (Laser, Stoßwellentherapie, Strahlentherapie) Medizinische Informationsverarbeitung (HIS, DICOM, Telemedizin)
Literatur	 R. Kramme: Medizintechnik. Verfahren, Systeme und Informationssysteme. Springer Verlag, 2016 (5. Auflage) R. F. Schmidt, G. Thews; "Physiologie des Menschen", Springer Verlag, 1997

-	G. J. Tortora, B. H. Derrickson, A. R. Pries; "Anatomie und
	Physiologie", Wiley-VCH Verlag, 2006
-	Foliensammlung zur Vorlesung

Modulnummer	5.1
Modultitel	Masterthesis
Modulkürzel	MA
Studiengang	Biopharmazeutisch-Medizintechnische Wissenschaften (M.Sc.)
Ort der Veranstaltung	Hochschule Biberach (HBC) / Universität Ulm (UUlm)
Modulverantwortlichkeit	Prof. Dr. Chrystelle Mavoungou-Pfäffle
	Prof Dr. Uwe Knippschild
Lehrende	Externe*r Betreuer*in + Betreuende*r Professor*in der HBC bzw.
	der UUlm
Voraussetzungen	Formal: Die formalen Vorrausetzungen sind in der dem
	Studiengang zugehörigen Studien- und Prüfungsordnung geregelt.
	Es gilt die Fassung zum Zeitpunkt des Studienbeginns.
	Inhaltlich: Entsprechende Module des Studienganges
Verwertbarkeit	
Semester (empfohlen)	Jedes Semester nach Erreichen der Voraussetzungen
Max. Teilnehmerzahl	
Art der Veranstaltung	⊠Präsenzveranstaltung(en)
	□Präsenzveranstaltung(en) mit E-Learning-Elementen
	□Präsenzveranstaltung(en) im Labor mit E-Learning-Elementen
	□reine E-Learning-Veranstaltung(en)
Veranstaltungssprache	⊠Deutsch, ⊠Englisch, □Weitere, nämlich:
ECTS-Credits	6 Credits
Prüfungsform und –umfang	□Klausur, □Referat, □Kolloquium, □Posterpräsentation,
	□Podiumsdiskussion, ⊠Mündliche Einzel-/ Gruppenprüfungen,
	□Essay, □Forumsbeitrag, □Übungen, ⊠Wissenschaftspraktische
	Tätigkeit, ⊠Bachelor- und Masterarbeit □Haus-/ Seminararbeit,
	□Einzel-/Gruppenpräsentation, □Portfolio, ⊠Protokoll,
	⊠Projektarbeit, □Lerntagebuch/ Lernjournale
	<u>Umfang der Prüfung:</u>
	Schriftliche Ausarbeitung und in der Regel hochschulöffentliches
	Kolloquium zur Masterarbeit.
	Bewertung der Masterarbeit und des Kolloquiums durch zwei
	Gutachter*innen (Notengewichtung 50/50), davon muss

	mindestens eine Person dozierende*r Professor*in im Master Biopharmazeutisch-Medizintechnische Wissenschaften sein.
Lernziele	Studierende, welche dieses Modul erfolgreich absolviert haben:
	- können eine Fragestellung aus dem Gebiet der Biopharmazeutisch-Medizintechnischen Wissenschaft auf Grundlage der bekannten Verfahren unter wissenschaftlichen Gesichtspunkten selbstständig strukturieren, planen, durchführen und nach geltenden "Regeln der guten wissenschaftlichen Praxis" dokumentieren, schriftlich zusammenfassen und einem Fachforum präsentieren.
	- sind in der Lage, ein selbst durchgeführtes Projekt im Zusammenhang darzustellen, die gewählte Vorgehensweise zu begründen und in fachlicher Diskussion zu verteidigen.
	- können die gewonnenen Ergebnisse kritisch hinterfragen.
	- können weiterführende Experimente / Untersuchungen aufgrund der gewonnenen Erkenntnisse planen.
	- beherrschen die aktuellen Methoden der Literaturrecherche, der Datenverwaltung und -aufbereitung.
	- sind teamfähig, interkulturell handlungsfähig und verfügen über ein adäquates Zeitmanagement.
Lehrinhalte	 In diesem Modul werden folgende fachliche Inhalte vermittelt: Aktuelle Methoden der Literaturrecherche; Datenerfassung, - verwaltung und -prozessierung Ergebnisinterpretation und Einordung der Ergebnisse in den Kontext aktueller Literatur Ergebnisdiskussion im erweiterten fachlichen Rahmen

	 Entwicklung weiterführender Experimente auf der Grundlage der gewonnenen Ergebnisse Methodenkritik Regeln des wissenschaftlichen Publizierens Zeitmanagement Teamarbeit Selbstorganisation
Litanotun	Die angebotenen Themen entstammen dem Fachgebiet der Biopharmazeutisch-Medizintechnischen Wissenschaften in Kombination mit angrenzenden Disziplinen. Die Themen sind üblicherweise den jeweiligen Forschungsgebieten der Dozenten zuzuordnen. Jeder Studierende erhält ein individuelles Thema.
Literatur	- Fachspezifische Literatur

INSTITUT FÜR BILDUNGSTRANSFER

Hochschule Biberach University of Applied Sciences Karlstraße 6-11 88400 Biberach Fon +49 7351 582-381

 $www.weiter bildung-biberach.de/biopharmazeut is ch-medizintechnische-wissenschaften \ bm-wiss@hochschule-bc.de$